Skip to main content

Performance plots for Python code snippets

Project description

perfplot

CircleCI codecov Code style: black PyPi Version GitHub stars PyPi downloads

perfplot extends Python's timeit by testing snippets with input parameters (e.g., the size of an array) and plotting the results. (By default, perfplot asserts the equality of the output of all snippets, too.)

For example, to compare different NumPy array concatenation methods, the script

import numpy
import perfplot

perfplot.show(
    setup=lambda n: numpy.random.rand(n),  # or simply setup=numpy.random.rand
    kernels=[
        lambda a: numpy.c_[a, a],
        lambda a: numpy.stack([a, a]).T,
        lambda a: numpy.vstack([a, a]).T,
        lambda a: numpy.column_stack([a, a]),
        lambda a: numpy.concatenate([a[:, None], a[:, None]], axis=1),
    ],
    labels=["c_", "stack", "vstack", "column_stack", "concat"],
    n_range=[2 ** k for k in range(15)],
    xlabel="len(a)",
    # More optional arguments with their default values:
    # title=None,
    # logx=False,
    # logy=False,
    # equality_check=numpy.allclose,  # set to None to disable "correctness" assertion
    # automatic_order=True,
    # colors=None,
    # target_time_per_measurement=1.0,
    # time_unit="auto"  # set to one of ("s", "ms", "us", or "ns") to force plot units
)

produces

Clearly, stack and vstack are the best options for large arrays.

Benchmarking and plotting can be separated, too. This allows multiple plots of the same data, for example:

out = perfplot.bench(
    # same arguments as above
    )
out.show()
out.save('perf.png')

Other examples:

Installation

perfplot is available from the Python Package Index, so simply do

pip3 install perfplot --user

to install or upgrade.

Testing

To run the perfplot unit tests, check out this repository and type

pytest

License

perfplot is published under the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

perfplot-0.6.4.tar.gz (6.1 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

perfplot-0.6.4-py3-none-any.whl (7.3 kB view details)

Uploaded Python 3

File details

Details for the file perfplot-0.6.4.tar.gz.

File metadata

  • Download URL: perfplot-0.6.4.tar.gz
  • Upload date:
  • Size: 6.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.5rc1

File hashes

Hashes for perfplot-0.6.4.tar.gz
Algorithm Hash digest
SHA256 0445032e455662f9308d4e3cf237ab2732a37ffe8da3ed895298e3ee595811dc
MD5 74c587a49d09d83f992ac68c3827adbe
BLAKE2b-256 5356f8e1d2bed9cf3908e7bdf0510f514b38236baf62278ab32ba3a4090c945c

See more details on using hashes here.

File details

Details for the file perfplot-0.6.4-py3-none-any.whl.

File metadata

  • Download URL: perfplot-0.6.4-py3-none-any.whl
  • Upload date:
  • Size: 7.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.5rc1

File hashes

Hashes for perfplot-0.6.4-py3-none-any.whl
Algorithm Hash digest
SHA256 61694122c9a1b7197abfeaf514d2b75a7d14097fd94b11f05cc60b2b24a86ba1
MD5 d4d4e2df22d82f9c9ecf1e9ccf437c13
BLAKE2b-256 15ea29a4a21a99724b56f46446569b8f455f7b91f09e5a1badff49831b7b5428

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page