Skip to main content

Performance plots for Python code snippets

Project description

perfplot

PyPi Version PyPI pyversions GitHub stars PyPi downloads

gh-actions codecov LGTM Code style: black

perfplot extends Python's timeit by testing snippets with input parameters (e.g., the size of an array) and plotting the results.

For example, to compare different NumPy array concatenation methods, the script

import numpy
import perfplot

perfplot.show(
    setup=lambda n: numpy.random.rand(n),  # or setup=numpy.random.rand
    kernels=[
        lambda a: numpy.c_[a, a],
        lambda a: numpy.stack([a, a]).T,
        lambda a: numpy.vstack([a, a]).T,
        lambda a: numpy.column_stack([a, a]),
        lambda a: numpy.concatenate([a[:, None], a[:, None]], axis=1),
    ],
    labels=["c_", "stack", "vstack", "column_stack", "concat"],
    n_range=[2 ** k for k in range(25)],
    xlabel="len(a)",
    # More optional arguments with their default values:
    # logx="auto",  # set to True or False to force scaling
    # logy="auto",
    # equality_check=numpy.allclose,  # set to None to disable "correctness" assertion
    # show_progress=True,
    # target_time_per_measurement=1.0,
    # time_unit="s",  # set to one of ("auto", "s", "ms", "us", or "ns") to force plot units
    # relative_to=1,  # plot the timings relative to one of the measurements
    # flops=lambda n: 3*n,  # FLOPS plots
)

produces

Clearly, stack and vstack are the best options for large arrays.

(By default, perfplot asserts the equality of the output of all snippets, too.)

Benchmarking and plotting can be separated. This allows multiple plots of the same data, for example:

out = perfplot.bench(
    # same arguments as above (except the plot-related ones, like time_unit or log*)
    )
out.show()
out.save("perf.png", transparent=True, bbox_inches="tight")

Other examples:

Installation

perfplot is available from the Python Package Index, so simply do

pip install perfplot

to install.

Testing

To run the perfplot unit tests, check out this repository and type

pytest

License

This software is published under the GPLv3 license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

perfplot-0.8.8.tar.gz (20.4 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

perfplot-0.8.8-py3-none-any.whl (19.7 kB view details)

Uploaded Python 3

File details

Details for the file perfplot-0.8.8.tar.gz.

File metadata

  • Download URL: perfplot-0.8.8.tar.gz
  • Upload date:
  • Size: 20.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.6

File hashes

Hashes for perfplot-0.8.8.tar.gz
Algorithm Hash digest
SHA256 8ab1a3731ec0e1a5cd4fa67652649154a980fb325447f01a0961a7e0a4c7e36c
MD5 5a2a34299c71fea94a6f21fbb835e961
BLAKE2b-256 57ffb146f7e86c466538c908a8cb27dfb91d4019a659579e97f443783127a740

See more details on using hashes here.

File details

Details for the file perfplot-0.8.8-py3-none-any.whl.

File metadata

  • Download URL: perfplot-0.8.8-py3-none-any.whl
  • Upload date:
  • Size: 19.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.6

File hashes

Hashes for perfplot-0.8.8-py3-none-any.whl
Algorithm Hash digest
SHA256 60ba057a50678f132352ca347dfe073473bfd41bef05138094bd04d636d0fcd2
MD5 4a5a77ee5227288c0ff17ad5fc9ed18d
BLAKE2b-256 f645c46a36d6933d9d97eb132eace0f4e7d5ba37765cda0d7f84e46ddc9e8a60

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page