Skip to main content

discrete pairwise undirected graphical models

Project description

Copyright (c) 2020 Nico Piatkowski

pxpy

The python library for discrete pairwise undirected graphical models.

Inference: * Loopy belief propagation (GPU support) * Junction tree * Stochastic Clenshaw-Curtis quadrature

Sampling: * Gibbs Sampling * Perturb+Map Sampling

Parameter learning: * Accelerated proximal gradient * built-in L1 / L2 regularization * Supports arbitrary custom regularization

Structure learning: * Chow-Liu trees * Soft-thresolding * High-order clique structures

Misc: * Support for spatio-temporal compressible reparametrization (STRF) * Runs on x86_64 (linux, windows), ARMv8 (linux), and MSP430 (bare metal) * Basic graph drawing via graphviz * Discretization

<https://randomfields.org>

Changelog

  • 1.0a30: Improved: Clique sampling speed

  • 1.0a29: Added: Randomized clique search

  • 1.0a28: Improved: Handling NaN-values during discretization (now interpreted as missing)

  • 1.0a27: Improved: Accelerated structure estimation

  • 1.0a26: Improved: Progress computation. Added: Online entropy computation for large cliques

  • 1.0a25: Improved: Memory management

  • 1.0a24: Improved: Structure estimation, backend. Added: Third-order structure estimation; simple graphviz output

  • 1.0a23: Improved: Structure estimation

  • 1.0a22: Improved: Discretization engine, support for external inference engine. Added: default to 32bit computation (disable via env PX_USE64BIT)

  • 1.0a21: Improved: Support for external inference engine

  • 1.0a20: Added: Support for external inference engine (access via env PX_EXTINF)

  • 1.0a19: Improved: Manual model creation

  • 1.0a18: Added: Debug mode (linux only, enable via env PX_DEBUGMODE)

  • 1.0a17: Improved: API, tests, regularization. Added: AIC and BIC computation

  • 1.0a16: Improved: Memory management, access to optimizer state in optimization hooks. Added: Support for training resumption

  • 1.0a15: Improved: API

  • 1.0a14: Improved: Memory management

  • 1.0a13: Improved: Memory management (fixed leak in conditional sampling/marginals)

  • 1.0a12: Improved: Access to vertex and pairwise marginals

  • 1.0a11: Added: Access to single variable marginals

  • 1.0a10: Improved: Library build process

  • 1.0a9: Added: Conditional sampling

  • 1.0a8: Imroved: Maximum-a-posteriori (MAP) estimation. Added: Custom graph construction

  • 1.0a7: Added: Conditional marginal inference, support for Ising/minimal statistics

  • 1.0a6: Added: Manual model creation, support for training data with missing values (represented by pxpy.MISSING_VALUE)

  • 1.0a5: Improved: Model management

  • 1.0a4: Added: Model access in regularization and proximal hooks

  • 1.0a3: Improved: GLIBC requirement, removed libgomp dependency

  • 1.0a2: Added: Python 3.5 compatibility

  • 1.0a1: Initial release

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pxpy-1.0a30.tar.gz (12.1 MB view details)

Uploaded Source

Built Distribution

pxpy-1.0a30-py3-none-any.whl (12.2 MB view details)

Uploaded Python 3

File details

Details for the file pxpy-1.0a30.tar.gz.

File metadata

  • Download URL: pxpy-1.0a30.tar.gz
  • Upload date:
  • Size: 12.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.1.0 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.8.3

File hashes

Hashes for pxpy-1.0a30.tar.gz
Algorithm Hash digest
SHA256 c9b15a3ece923379dfbce4b314194bee473cfe8a2a9a92ada079de3e57505018
MD5 caa3ea9f4fe5a241d026ad59567a6f93
BLAKE2b-256 e6f74ff8f494a5b6b5aa59b0a087f06437f2454313e00374237343860f236c94

See more details on using hashes here.

File details

Details for the file pxpy-1.0a30-py3-none-any.whl.

File metadata

  • Download URL: pxpy-1.0a30-py3-none-any.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.1.0 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.8.3

File hashes

Hashes for pxpy-1.0a30-py3-none-any.whl
Algorithm Hash digest
SHA256 040d3db22aad573db7c30ec26a877ecb7100a2632c22e9138511948e82938962
MD5 59fade2f8db098fc96067cd66aaf584c
BLAKE2b-256 332281fb507f216590457228a03974fa952d97977ea24ad6a887b5ebf463ef4f

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page