Skip to main content

Alternative regular expression module, to replace re.

Project description

Introduction

This new regex implementation is intended eventually to replace Python’s current re module implementation.

For testing and comparison with the current ‘re’ module the new implementation is in the form of a module called ‘regex’.

Old vs new behaviour

This module has 2 behaviours:

Version 0 behaviour (old behaviour, compatible with the current re module):

Indicated by the VERSION0 or V0 flag, or (?V0) in the pattern.

.split won’t split a string at a zero-width match.

Zero-width matches are handled like in the re module.

Inline flags apply to the entire pattern, and they can’t be turned off.

Only simple sets are supported.

Case-insensitive matches in Unicode use simple case-folding by default.

Version 1 behaviour (new behaviour, different from the current re module):

Indicated by the VERSION1 or V1 flag, or (?V1) in the pattern.

.split will split a string at a zero-width match.

Zero-width matches are handled like in Perl and PCRE.

Inline flags apply to the end of the group or pattern, and they can be turned off.

Nested sets and set operations are supported.

Case-insensitive matches in Unicode use full case-folding by default.

If no version is specified, the regex module will default to regex.DEFAULT_VERSION. In the short term this will be VERSION0, but in the longer term it will be VERSION1.

Case-insensitive matches in Unicode

The regex module supports both simple and full case-folding for case-insensitive matches in Unicode. Use of full case-folding can be turned on using the FULLCASE or F flag, or (?f) in the pattern. Please note that this flag affects how the IGNORECASE flag works; the FULLCASE flag itself does not turn on case-insensitive matching.

In the version 0 behaviour, the flag is off by default.

In the version 1 behaviour, the flag is on by default.

Nested sets and set operations

It’s not possible to support both simple sets, as used in the re module, and nested sets at the same time because of a difference in the meaning of an unescaped "[" in a set.

For example, the pattern [[a-z]--[aeiou]] is treated in the version 0 behaviour (simple sets, compatible with the re module) as:

Set containing “[” and the letters “a” to “z”

Literal “–”

Set containing letters “a”, “e”, “i”, “o”, “u”

but in the version 1 behaviour (nested sets, enhanced behaviour) as:

Set which is:

Set containing the letters “a” to “z”

but excluding:

Set containing the letters “a”, “e”, “i”, “o”, “u”

Version 0 behaviour: only simple sets are supported.

Version 1 behaviour: nested sets and set operations are supported.

Flags

There are 2 kinds of flag: scoped and global. Scoped flags can apply to only part of a pattern and can be turned on or off; global flags apply to the entire pattern and can only be turned on.

The scoped flags are: FULLCASE, IGNORECASE, MULTILINE, DOTALL, VERBOSE, WORD.

The global flags are: ASCII, BESTMATCH, ENHANCEMATCH, LOCALE, REVERSE, UNICODE, VERSION0, VERSION1.

If neither the ASCII, LOCALE nor UNICODE flag is specified, it will default to UNICODE if the regex pattern is a Unicode string and ASCII if it’s a bytestring.

The ENHANCEMATCH flag makes fuzzy matching attempt to improve the fit of the next match that it finds.

The BESTMATCH flag makes fuzzy matching search for the best match instead of the next match.

Notes on named capture groups

All capture groups have a group number, starting from 1.

Groups with the same group name will have the same group number, and groups with a different group name will have a different group number.

The same name can be used by more than one group, with later captures ‘overwriting’ earlier captures. All of the captures of the group will be available from the captures method of the match object.

Group numbers will be reused across different branches of a branch reset, eg. (?|(first)|(second)) has only group 1. If capture groups have different group names then they will, of course, have different group numbers, eg. (?|(?P<foo>first)|(?P<bar>second)) has group 1 (“foo”) and group 2 (“bar”).

In the regex (\s+)(?|(?P<foo>[A-Z]+)|(\w+) (?<foo>[0-9]+) there are 2 groups:

  1. (\s+) is group 1.

  2. (?P<foo>[A-Z]+) is group 2, also called “foo”.

  3. (\w+) is group 2 because of the branch reset.

  4. (?<foo>[0-9]+) is group 2 because it’s called “foo”.

If you want to prevent (\w+) from being group 2, you need to name it (different name, different group number).

Multithreading

The regex module releases the GIL during matching on instances of the built-in (immutable) string classes, enabling other Python threads to run concurrently. It is also possible to force the regex module to release the GIL during matching by calling the matching methods with the keyword argument concurrent=True. The behaviour is undefined if the string changes during matching, so use it only when it is guaranteed that that won’t happen.

Building for 64-bits

If the source files are built for a 64-bit target then the string positions will also be 64-bit.

Unicode

This module supports Unicode 7.0.

Full Unicode case-folding is supported.

Additional features

The issue numbers relate to the Python bug tracker, except where listed as “Hg issue”.

  • Added capture subscripting for expandf and subf/subfn (Hg issue 133) (Python 2.6 and above)

    You can now use subscripting to get the captures of a repeated capture group.

    Examples:

    >>> import regex
    >>> m = regex.match(r"(\w)+", "abc")
    >>> m.expandf("{1}")
    'c'
    >>> m.expandf("{1[0]} {1[1]} {1[2]}")
    'a b c'
    >>> m.expandf("{1[-1]} {1[-2]} {1[-3]}")
    'c b a'
    >>>
    >>> m = regex.match(r"(?P<letter>\w)+", "abc")
    >>> m.expandf("{letter}")
    'c'
    >>> m.expandf("{letter[0]} {letter[1]} {letter[2]}")
    'a b c'
    >>> m.expandf("{letter[-1]} {letter[-2]} {letter[-3]}")
    'c b a'
  • Added support for referring to a group by number using (?P=…).

    This is in addition to the existing \g<...>.

  • Fixed the handling of locale-sensitive regexes.

    The LOCALE flag is intended for legacy code and has limited support. You’re still recommended to use Unicode instead.

  • Added partial matches (Hg issue 102)

    A partial match is one that matches up to the end of string, but that string has been truncated and you want to know whether a complete match could be possible if the string had not been truncated.

    Partial matches are supported by match, search, fullmatch and finditer with the partial keyword argument.

    Match objects have a partial attribute, which is True if it’s a partial match.

    For example, if you wanted a user to enter a 4-digit number and check it character by character as it was being entered:

    >>> pattern = regex.compile(r'\d{4}')
    
    >>> # Initially, nothing has been entered:
    >>> print(pattern.fullmatch('', partial=True))
    <regex.Match object; span=(0, 0), match='', partial=True>
    
    >>> # An empty string is OK, but it's only a partial match.
    >>> # The user enters a letter:
    >>> print(pattern.fullmatch('a', partial=True))
    None
    >>> # It'll never match.
    
    >>> # The user deletes that and enters a digit:
    >>> print(pattern.fullmatch('1', partial=True))
    <regex.Match object; span=(0, 1), match='1', partial=True>
    >>> # It matches this far, but it's only a partial match.
    
    >>> # The user enters 2 more digits:
    >>> print(pattern.fullmatch('123', partial=True))
    <regex.Match object; span=(0, 3), match='123', partial=True>
    >>> # It matches this far, but it's only a partial match.
    
    >>> # The user enters another digit:
    >>> print(pattern.fullmatch('1234', partial=True))
    <regex.Match object; span=(0, 4), match='1234'>
    >>> # It's a complete match.
    
    >>> # If the user enters another digit:
    >>> print(pattern.fullmatch('12345', partial=True))
    None
    >>> # It's no longer a match.
    
    >>> # This is a partial match:
    >>> pattern.match('123', partial=True).partial
    True
    
    >>> # This is a complete match:
    >>> pattern.match('1233', partial=True).partial
    False
    
  • * operator not working correctly with sub() (Hg issue 106)

    Sometimes it’s not clear how zero-width matches should be handled. For example, should .* match 0 characters directly after matching >0 characters?

    Most regex implementations follow the lead of Perl (PCRE), but the re module sometimes doesn’t. The Perl behaviour appears to be the most common (and the re module is sometimes definitely wrong), so in version 1 the regex module follows the Perl behaviour, whereas in version 0 it follows the legacy re behaviour.

    Examples:

    # Version 0 behaviour (like re)
    >>> regex.sub('(?V0).*', 'x', 'test')
    'x'
    >>> regex.sub('(?V0).*?', '|', 'test')
    '|t|e|s|t|'
    
    # Version 1 behaviour (like Perl)
    >>> regex.sub('(?V1).*', 'x', 'test')
    'xx'
    >>> regex.sub('(?V1).*?', '|', 'test')
    '|||||||||'
  • re.group() should never return a bytearray (issue #18468)

    For compatibility with the re module, the regex module returns all matching bytestrings as bytes, starting from Python 3.4.

    Examples:

    >>> # Python 3.4 and later
    >>> import regex
    >>> regex.match(b'.', bytearray(b'a')).group()
    b'a'
    
    >>> # Python 3.1-3.3
    >>> import regex
    >>> regex.match(b'.', bytearray(b'a')).group()
    bytearray(b'a')
  • Added capturesdict (Hg issue 86)

    capturesdict is a combination of groupdict and captures:

    groupdict returns a dict of the named groups and the last capture of those groups.

    captures returns a list of all the captures of a group

    capturesdict returns a dict of the named groups and lists of all the captures of those groups.

    Examples:

    >>> import regex
    >>> m = regex.match(r"(?:(?P<word>\w+) (?P<digits>\d+)\n)+", "one 1\ntwo 2\nthree 3\n")
    >>> m.groupdict()
    {'word': 'three', 'digits': '3'}
    >>> m.captures("word")
    ['one', 'two', 'three']
    >>> m.captures("digits")
    ['1', '2', '3']
    >>> m.capturesdict()
    {'word': ['one', 'two', 'three'], 'digits': ['1', '2', '3']}
  • Allow duplicate names of groups (Hg issue 87)

    Group names can now be duplicated.

    Examples:

    >>> import regex
    >>>
    >>> # With optional groups:
    >>>
    >>> # Both groups capture, the second capture 'overwriting' the first.
    >>> m = regex.match(r"(?P<item>\w+)? or (?P<item>\w+)?", "first or second")
    >>> m.group("item")
    'second'
    >>> m.captures("item")
    ['first', 'second']
    >>> # Only the second group captures.
    >>> m = regex.match(r"(?P<item>\w+)? or (?P<item>\w+)?", " or second")
    >>> m.group("item")
    'second'
    >>> m.captures("item")
    ['second']
    >>> # Only the first group captures.
    >>> m = regex.match(r"(?P<item>\w+)? or (?P<item>\w+)?", "first or ")
    >>> m.group("item")
    'first'
    >>> m.captures("item")
    ['first']
    >>>
    >>> # With mandatory groups:
    >>>
    >>> # Both groups capture, the second capture 'overwriting' the first.
    >>> m = regex.match(r"(?P<item>\w*) or (?P<item>\w*)?", "first or second")
    >>> m.group("item")
    'second'
    >>> m.captures("item")
    ['first', 'second']
    >>> # Again, both groups capture, the second capture 'overwriting' the first.
    >>> m = regex.match(r"(?P<item>\w*) or (?P<item>\w*)", " or second")
    >>> m.group("item")
    'second'
    >>> m.captures("item")
    ['', 'second']
    >>> # And yet again, both groups capture, the second capture 'overwriting' the first.
    >>> m = regex.match(r"(?P<item>\w*) or (?P<item>\w*)", "first or ")
    >>> m.group("item")
    ''
    >>> m.captures("item")
    ['first', '']
  • Added fullmatch (issue #16203)

    fullmatch behaves like match, except that it must match all of the string.

    Examples:

    >>> import regex
    >>> print(regex.fullmatch(r"abc", "abc").span())
    (0, 3)
    >>> print(regex.fullmatch(r"abc", "abcx"))
    None
    >>> print(regex.fullmatch(r"abc", "abcx", endpos=3).span())
    (0, 3)
    >>> print(regex.fullmatch(r"abc", "xabcy", pos=1, endpos=4).span())
    (1, 4)
    >>>
    >>> regex.match(r"a.*?", "abcd").group(0)
    'a'
    >>> regex.fullmatch(r"a.*?", "abcd").group(0)
    'abcd'
  • Added subf and subfn (Python 2.6 and above)

    subf and subfn are alternatives to sub and subn respectively. When passed a replacement string, they treat it as a format string.

    Examples:

    >>> import regex
    >>> regex.subf(r"(\w+) (\w+)", "{0} => {2} {1}", "foo bar")
    'foo bar => bar foo'
    >>> regex.subf(r"(?P<word1>\w+) (?P<word2>\w+)", "{word2} {word1}", "foo bar")
    'bar foo'
  • Added expandf to match object (Python 2.6 and above)

    expandf is an alternative to expand. When passed a replacement string, it treats it as a format string.

    Examples:

    >>> import regex
    >>> m = regex.match(r"(\w+) (\w+)", "foo bar")
    >>> m.expandf("{0} => {2} {1}")
    'foo bar => bar foo'
    >>>
    >>> m = regex.match(r"(?P<word1>\w+) (?P<word2>\w+)", "foo bar")
    >>> m.expandf("{word2} {word1}")
    'bar foo'
  • Detach searched string

    A match object contains a reference to the string that was searched, via its string attribute. The match object now has a detach_string method that will ‘detach’ that string, making it available for garbage collection (this might save valuable memory if that string is very large).

    Example:

    >>> import regex
    >>> m = regex.search(r"\w+", "Hello world")
    >>> print(m.group())
    Hello
    >>> print(m.string)
    Hello world
    >>> m.detach_string()
    >>> print(m.group())
    Hello
    >>> print(m.string)
    None
  • Characters in a group name (issue #14462)

    A group name can now contain the same characters as an identifier. These are different in Python 2 and Python 3.

  • Recursive patterns (Hg issue 27)

    Recursive and repeated patterns are supported.

    (?R) or (?0) tries to match the entire regex recursively. (?1), (?2), etc, try to match the relevant capture group.

    (?&name) tries to match the named capture group.

    Examples:

    >>> regex.match(r"(Tarzan|Jane) loves (?1)", "Tarzan loves Jane").groups()
    ('Tarzan',)
    >>> regex.match(r"(Tarzan|Jane) loves (?1)", "Jane loves Tarzan").groups()
    ('Jane',)
    
    >>> m = regex.search(r"(\w)(?:(?R)|(\w?))\1", "kayak")
    >>> m.group(0, 1, 2)
    ('kayak', 'k', None)

    The first two examples show how the subpattern within the capture group is reused, but is _not_ itself a capture group. In other words, "(Tarzan|Jane) loves (?1)" is equivalent to "(Tarzan|Jane) loves (?:Tarzan|Jane)".

    It’s possible to backtrack into a recursed or repeated group.

    You can’t call a group if there is more than one group with that group name or group number ("ambiguous group reference"). For example, (?P<foo>\w+) (?P<foo>\w+) (?&foo)? has 2 groups called “foo” (both group 1) and (?|([A-Z]+)|([0-9]+)) (?1)? has 2 groups with group number 1.

    The alternative forms (?P>name) and (?P&name) are also supported.

  • repr(regex) doesn’t include actual regex (issue #13592)

    The repr of a compiled regex is now in the form of a eval-able string. For example:

    >>> r = regex.compile("foo", regex.I)
    >>> repr(r)
    "regex.Regex('foo', flags=regex.I | regex.V0)"
    >>> r
    regex.Regex('foo', flags=regex.I | regex.V0)

    The regex module has Regex as an alias for the ‘compile’ function.

  • Improve the repr for regular expression match objects (issue #17087)

    The repr of a match object is now a more useful form. For example:

    >>> regex.search(r"\d+", "abc012def")
    <regex.Match object; span=(3, 6), match='012'>
  • Python lib re cannot handle Unicode properly due to narrow/wide bug (issue #12729)

    The source code of the regex module has been updated to support PEP 393 (“Flexible String Representation”), which is new in Python 3.3.

  • Full Unicode case-folding is supported.

    In version 1 behaviour, the regex module uses full case-folding when performing case-insensitive matches in Unicode.

    Examples (in Python 3):

    >>> regex.match(r"(?iV1)strasse", "stra\N{LATIN SMALL LETTER SHARP S}e").span()
    (0, 6)
    >>> regex.match(r"(?iV1)stra\N{LATIN SMALL LETTER SHARP S}e", "STRASSE").span()
    (0, 7)
    

    In version 0 behaviour, it uses simple case-folding for backward compatibility with the re module.

  • Approximate “fuzzy” matching (Hg issue 12, Hg issue 41, Hg issue 109)

    Regex usually attempts an exact match, but sometimes an approximate, or “fuzzy”, match is needed, for those cases where the text being searched may contain errors in the form of inserted, deleted or substituted characters.

    A fuzzy regex specifies which types of errors are permitted, and, optionally, either the minimum and maximum or only the maximum permitted number of each type. (You cannot specify only a minimum.)

    The 3 types of error are:

    • Insertion, indicated by “i”

    • Deletion, indicated by “d”

    • Substitution, indicated by “s”

    In addition, “e” indicates any type of error.

    The fuzziness of a regex item is specified between “{” and “}” after the item.

    Examples:

    foo match “foo” exactly

    (?:foo){i} match “foo”, permitting insertions

    (?:foo){d} match “foo”, permitting deletions

    (?:foo){s} match “foo”, permitting substitutions

    (?:foo){i,s} match “foo”, permitting insertions and substitutions

    (?:foo){e} match “foo”, permitting errors

    If a certain type of error is specified, then any type not specified will not be permitted.

    In the following examples I’ll omit the item and write only the fuzziness.

    {i<=3} permit at most 3 insertions, but no other types

    {d<=3} permit at most 3 deletions, but no other types

    {s<=3} permit at most 3 substitutions, but no other types

    {i<=1,s<=2} permit at most 1 insertion and at most 2 substitutions, but no deletions

    {e<=3} permit at most 3 errors

    {1<=e<=3} permit at least 1 and at most 3 errors

    {i<=2,d<=2,e<=3} permit at most 2 insertions, at most 2 deletions, at most 3 errors in total, but no substitutions

    It’s also possible to state the costs of each type of error and the maximum permitted total cost.

    Examples:

    {2i+2d+1s<=4} each insertion costs 2, each deletion costs 2, each substitution costs 1, the total cost must not exceed 4

    {i<=1,d<=1,s<=1,2i+2d+1s<=4} at most 1 insertion, at most 1 deletion, at most 1 substitution; each insertion costs 2, each deletion costs 2, each substitution costs 1, the total cost must not exceed 4

    You can also use “<” instead of “<=” if you want an exclusive minimum or maximum:

    {e<=3} permit up to 3 errors

    {e<4} permit fewer than 4 errors

    {0<e<4} permit more than 0 but fewer than 4 errors

    By default, fuzzy matching searches for the first match that meets the given constraints. The ENHANCEMATCH flag will cause it to attempt to improve the fit (i.e. reduce the number of errors) of the match that it has found.

    The BESTMATCH flag will make it search for the best match instead.

    Further examples to note:

    regex.search("(dog){e}", "cat and dog")[1] returns "cat" because that matches "dog" with 3 errors, which is within the limit (an unlimited number of errors is permitted).

    regex.search("(dog){e<=1}", "cat and dog")[1] returns " dog" (with a leading space) because that matches "dog" with 1 error, which is within the limit (1 error is permitted).

    regex.search("(?e)(dog){e<=1}", "cat and dog")[1] returns "dog" (without a leading space) because the fuzzy search matches " dog" with 1 error, which is within the limit (1 error is permitted), and the (?e) then makes it attempt a better fit.

    In the first two examples there are perfect matches later in the string, but in neither case is it the first possible match.

    The match object has an attribute fuzzy_counts which gives the total number of substitutions, insertions and deletions.

    >>> # A 'raw' fuzzy match:
    >>> regex.fullmatch(r"(?:cats|cat){e<=1}", "cat").fuzzy_counts
    (0, 0, 1)
    >>> # 0 substitutions, 0 insertions, 1 deletion.
    
    >>> # A better match might be possible if the ENHANCEMATCH flag used:
    >>> regex.fullmatch(r"(?e)(?:cats|cat){e<=1}", "cat").fuzzy_counts
    (0, 0, 0)
    >>> # 0 substitutions, 0 insertions, 0 deletions.
    
  • Named lists (Hg issue 11)

    \L<name>

    There are occasions where you may want to include a list (actually, a set) of options in a regex.

    One way is to build the pattern like this:

    p = regex.compile(r"first|second|third|fourth|fifth")

    but if the list is large, parsing the resulting regex can take considerable time, and care must also be taken that the strings are properly escaped if they contain any character that has a special meaning in a regex, and that if there is a shorter string that occurs initially in a longer string that the longer string is listed before the shorter one, for example, “cats” before “cat”.

    The new alternative is to use a named list:

    option_set = ["first", "second", "third", "fourth", "fifth"]
    p = regex.compile(r"\L<options>", options=option_set)

    The order of the items is irrelevant, they are treated as a set. The named lists are available as the .named_lists attribute of the pattern object

    >>> print(p.named_lists)
    {'options': frozenset({'second', 'fifth', 'fourth', 'third', 'first'})}
  • Start and end of word

    \m matches at the start of a word.

    \M matches at the end of a word.

    Compare with \b, which matches at the start or end of a word.

  • Unicode line separators

    Normally the only line separator is \n (\x0A), but if the WORD flag is turned on then the line separators are the pair \x0D\x0A, and \x0A, \x0B, \x0C and \x0D, plus \x85, \u2028 and \u2029 when working with Unicode.

    This affects the regex dot ".", which, with the DOTALL flag turned off, matches any character except a line separator. It also affects the line anchors ^ and $ (in multiline mode).

  • Set operators

    Version 1 behaviour only

    Set operators have been added, and a set [...] can include nested sets.

    The operators, in order of increasing precedence, are:

    || for union (“x||y” means “x or y”)

    ~~ (double tilde) for symmetric difference (“x~~y” means “x or y, but not both”)

    && for intersection (“x&&y” means “x and y”)

    -- (double dash) for difference (“x–y” means “x but not y”)

    Implicit union, ie, simple juxtaposition like in [ab], has the highest precedence. Thus, [ab&&cd] is the same as [[a||b]&&[c||d]].

    Examples:

    [ab] # Set containing ‘a’ and ‘b’

    [a-z] # Set containing ‘a’ .. ‘z’

    [[a-z]--[qw]] # Set containing ‘a’ .. ‘z’, but not ‘q’ or ‘w’

    [a-z--qw] # Same as above

    [\p{L}--QW] # Set containing all letters except ‘Q’ and ‘W’

    [\p{N}--[0-9]] # Set containing all numbers except ‘0’ .. ‘9’

    [\p{ASCII}&&\p{Letter}] # Set containing all characters which are ASCII and letter

  • regex.escape (issue #2650)

    regex.escape has an additional keyword parameter special_only. When True, only ‘special’ regex characters, such as ‘?’, are escaped.

    Examples:

    >>> regex.escape("foo!?")
    'foo\\!\\?'
    >>> regex.escape("foo!?", special_only=True)
    'foo!\\?'
    
  • Repeated captures (issue #7132)

    A match object has additional methods which return information on all the successful matches of a repeated capture group. These methods are:

    matchobject.captures([group1, ...])

    Returns a list of the strings matched in a group or groups. Compare with matchobject.group([group1, ...]).

    matchobject.starts([group])

    Returns a list of the start positions. Compare with matchobject.start([group]).

    matchobject.ends([group])

    Returns a list of the end positions. Compare with matchobject.end([group]).

    matchobject.spans([group])

    Returns a list of the spans. Compare with matchobject.span([group]).

    Examples:

    >>> m = regex.search(r"(\w{3})+", "123456789")
    >>> m.group(1)
    '789'
    >>> m.captures(1)
    ['123', '456', '789']
    >>> m.start(1)
    6
    >>> m.starts(1)
    [0, 3, 6]
    >>> m.end(1)
    9
    >>> m.ends(1)
    [3, 6, 9]
    >>> m.span(1)
    (6, 9)
    >>> m.spans(1)
    [(0, 3), (3, 6), (6, 9)]
    
  • Atomic grouping (issue #433030)

    (?>...)

    If the following pattern subsequently fails, then the subpattern as a whole will fail.

  • Possessive quantifiers.

    (?:...)?+ ; (?:...)*+ ; (?:...)++ ; (?:...){min,max}+

    The subpattern is matched up to ‘max’ times. If the following pattern subsequently fails, then all of the repeated subpatterns will fail as a whole. For example, (?:...)++ is equivalent to (?>(?:...)+).

  • Scoped flags (issue #433028)

    (?flags-flags:...)

    The flags will apply only to the subpattern. Flags can be turned on or off.

  • Inline flags (issue #433024, issue #433027)

    (?flags-flags)

    Version 0 behaviour: the flags apply to the entire pattern, and they can’t be turned off.

    Version 1 behaviour: the flags apply to the end of the group or pattern, and they can be turned on or off.

  • Repeated repeats (issue #2537)

    A regex like ((x|y+)*)* will be accepted and will work correctly, but should complete more quickly.

  • Definition of ‘word’ character (issue #1693050)

    The definition of a ‘word’ character has been expanded for Unicode. It now conforms to the Unicode specification at http://www.unicode.org/reports/tr29/. This applies to \w, \W, \b and \B.

  • Groups in lookahead and lookbehind (issue #814253)

    Groups and group references are permitted in both lookahead and lookbehind.

  • Variable-length lookbehind

    A lookbehind can match a variable-length string.

  • Correct handling of charset with ignore case flag (issue #3511)

    Ranges within charsets are handled correctly when the ignore-case flag is turned on.

  • Unmatched group in replacement (issue #1519638)

    An unmatched group is treated as an empty string in a replacement template.

  • ‘Pathological’ patterns (issue #1566086, issue #1662581, issue #1448325, issue #1721518, issue #1297193)

    ‘Pathological’ patterns should complete more quickly.

  • Flags argument for regex.split, regex.sub and regex.subn (issue #3482)

    regex.split, regex.sub and regex.subn support a ‘flags’ argument.

  • Pos and endpos arguments for regex.sub and regex.subn

    regex.sub and regex.subn support ‘pos’ and ‘endpos’ arguments.

  • ‘Overlapped’ argument for regex.findall and regex.finditer

    regex.findall and regex.finditer support an ‘overlapped’ flag which permits overlapped matches.

  • Unicode escapes (issue #3665)

    The Unicode escapes \uxxxx and \Uxxxxxxxx are supported.

  • Large patterns (issue #1160)

    Patterns can be much larger.

  • Zero-width match with regex.finditer (issue #1647489)

    regex.finditer behaves correctly when it splits at a zero-width match.

  • Zero-width split with regex.split (issue #3262)

    Version 0 behaviour: a string won’t be split at a zero-width match.

    Version 1 behaviour: a string will be split at a zero-width match.

  • Splititer

    regex.splititer has been added. It’s a generator equivalent of regex.split.

  • Subscripting for groups

    A match object accepts access to the captured groups via subscripting and slicing:

    >>> m = regex.search(r"(?P<before>.*?)(?P<num>\d+)(?P<after>.*)", "pqr123stu")
    >>> print m["before"]
    pqr
    >>> print m["num"]
    123
    >>> print m["after"]
    stu
    >>> print len(m)
    4
    >>> print m[:]
    ('pqr123stu', 'pqr', '123', 'stu')
    
  • Named groups

    Groups can be named with (?<name>...) as well as the current (?P<name>...).

  • Group references

    Groups can be referenced within a pattern with \g<name>. This also allows there to be more than 99 groups.

  • Named characters

    \N{name}

    Named characters are supported. (Note: only those known by Python’s Unicode database are supported.)

  • Unicode codepoint properties, including scripts and blocks

    \p{property=value}; \P{property=value}; \p{value} ; \P{value}

    Many Unicode properties are supported, including blocks and scripts. \p{property=value} or \p{property:value} matches a character whose property property has value value. The inverse of \p{property=value} is \P{property=value} or \p{^property=value}.

    If the short form \p{value} is used, the properties are checked in the order: General_Category, Script, Block, binary property:

    1. Latin, the ‘Latin’ script (Script=Latin).

    2. Cyrillic, the ‘Cyrillic’ script (Script=Cyrillic).

    3. BasicLatin, the ‘BasicLatin’ block (Block=BasicLatin).

    4. Alphabetic, the ‘Alphabetic’ binary property (Alphabetic=Yes).

    A short form starting with Is indicates a script or binary property:

    1. IsLatin, the ‘Latin’ script (Script=Latin).

    2. IsCyrillic, the ‘Cyrillic’ script (Script=Cyrillic).

    3. IsAlphabetic, the ‘Alphabetic’ binary property (Alphabetic=Yes).

    A short form starting with In indicates a block property:

    1. InBasicLatin, the ‘BasicLatin’ block (Block=BasicLatin).

    2. InCyrillic, the ‘Cyrillic’ block (Block=Cyrillic).

  • POSIX character classes

    [[:alpha:]]; [[:^alpha:]]

    POSIX character classes are supported. These are normally treated as an alternative form of \p{...}.

    The exceptions are alnum, digit, punct and xdigit, whose definitions are different from those of Unicode.

    [[:alnum:]] is equivalent to \p{posix_alnum}.

    [[:digit:]] is equivalent to \p{posix_digit}.

    [[:punct:]] is equivalent to \p{posix_punct}.

    [[:xdigit:]] is equivalent to \p{posix_xdigit}.

  • Search anchor

    \G

    A search anchor has been added. It matches at the position where each search started/continued and can be used for contiguous matches or in negative variable-length lookbehinds to limit how far back the lookbehind goes:

    >>> regex.findall(r"\w{2}", "abcd ef")
    ['ab', 'cd', 'ef']
    >>> regex.findall(r"\G\w{2}", "abcd ef")
    ['ab', 'cd']
    
    1. The search starts at position 0 and matches 2 letters ‘ab’.

    2. The search continues at position 2 and matches 2 letters ‘cd’.

    3. The search continues at position 4 and fails to match any letters.

    4. The anchor stops the search start position from being advanced, so there are no more results.

  • Reverse searching

    Searches can now work backwards:

    >>> regex.findall(r".", "abc")
    ['a', 'b', 'c']
    >>> regex.findall(r"(?r).", "abc")
    ['c', 'b', 'a']
    

    Note: the result of a reverse search is not necessarily the reverse of a forward search:

    >>> regex.findall(r"..", "abcde")
    ['ab', 'cd']
    >>> regex.findall(r"(?r)..", "abcde")
    ['de', 'bc']
    
  • Matching a single grapheme

    \X

    The grapheme matcher is supported. It now conforms to the Unicode specification at http://www.unicode.org/reports/tr29/.

  • Branch reset

    (?|…|…)

    Capture group numbers will be reused across the alternatives, but groups with different names will have different group numbers.

    Examples:: >>> import regex >>> regex.match(r”(?|(first)|(second))”, “first”).groups() (‘first’,) >>> regex.match(r”(?|(first)|(second))”, “second”).groups() (‘second’,)

    Note that there is only one group.

  • Default Unicode word boundary

    The WORD flag changes the definition of a ‘word boundary’ to that of a default Unicode word boundary. This applies to \b and \B.

  • SRE engine do not release the GIL (issue #1366311)

    The regex module can release the GIL during matching (see the above section on multithreading).

    Iterators can be safely shared across threads.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

regex-2015.06.10.tar.gz (547.5 kB view details)

Uploaded Source

Built Distributions

regex-2015.06.10-cp35-none-win_amd64.whl (223.5 kB view details)

Uploaded CPython 3.5Windows x86-64

regex-2015.06.10-cp35-none-win32.whl (218.1 kB view details)

Uploaded CPython 3.5Windows x86

regex-2015.06.10-cp34-none-win_amd64.whl (223.7 kB view details)

Uploaded CPython 3.4Windows x86-64

regex-2015.06.10-cp34-none-win32.whl (218.1 kB view details)

Uploaded CPython 3.4Windows x86

regex-2015.06.10-cp33-none-win_amd64.whl (223.6 kB view details)

Uploaded CPython 3.3Windows x86-64

regex-2015.06.10-cp33-none-win32.whl (217.9 kB view details)

Uploaded CPython 3.3Windows x86

regex-2015.06.10-cp32-none-win_amd64.whl (222.5 kB view details)

Uploaded CPython 3.2Windows x86-64

regex-2015.06.10-cp32-none-win32.whl (216.9 kB view details)

Uploaded CPython 3.2Windows x86

regex-2015.06.10-cp31-none-win_amd64.whl (222.5 kB view details)

Uploaded CPython 3.1Windows x86-64

regex-2015.06.10-cp31-none-win32.whl (216.9 kB view details)

Uploaded CPython 3.1Windows x86

regex-2015.06.10-cp27-none-win_amd64.whl (222.6 kB view details)

Uploaded CPython 2.7Windows x86-64

regex-2015.06.10-cp27-none-win32.whl (216.9 kB view details)

Uploaded CPython 2.7Windows x86

regex-2015.06.10-cp26-none-win_amd64.whl (222.5 kB view details)

Uploaded CPython 2.6Windows x86-64

regex-2015.06.10-cp26-none-win32.whl (216.8 kB view details)

Uploaded CPython 2.6Windows x86

regex-2015.06.10-cp25-none-win_amd64.whl (220.6 kB view details)

Uploaded CPython 2.5Windows x86-64

regex-2015.06.10-cp25-none-win32.whl (215.3 kB view details)

Uploaded CPython 2.5Windows x86

File details

Details for the file regex-2015.06.10.tar.gz.

File metadata

  • Download URL: regex-2015.06.10.tar.gz
  • Upload date:
  • Size: 547.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for regex-2015.06.10.tar.gz
Algorithm Hash digest
SHA256 36579d3ceeeb6c95a2db0d22e9ab7192f6dd02ee05b3979064ff72a91644a0bc
MD5 90547c44ee08a2b33e33da868a25721b
BLAKE2b-256 08023d085566bb3561957e6b4ff3dbe02b5f54a021e39f9baad5317f69bad574

See more details on using hashes here.

File details

Details for the file regex-2015.06.10-cp35-none-win_amd64.whl.

File metadata

File hashes

Hashes for regex-2015.06.10-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 225eceadd2a023eea65038eddbeca4730e163ebf26acd9b1002fee99adfbedd6
MD5 8202627020c5906b4e03c2b8c8c9901e
BLAKE2b-256 35956030a5f01fd9929fe7d86203620f25c5de0f4b8750a908b28cfe6cd86c89

See more details on using hashes here.

File details

Details for the file regex-2015.06.10-cp35-none-win32.whl.

File metadata

File hashes

Hashes for regex-2015.06.10-cp35-none-win32.whl
Algorithm Hash digest
SHA256 c05d0e0a146eb92f063456027b01f824d8a6b915148447f4fe848d0dbdab3ced
MD5 15e70af2d4547afbb72cda43267045d6
BLAKE2b-256 1908028a6a01ff81e20ae0a05fbab96ef73afe963025e96b69e4c2d81dd4f1ed

See more details on using hashes here.

File details

Details for the file regex-2015.06.10-cp34-none-win_amd64.whl.

File metadata

File hashes

Hashes for regex-2015.06.10-cp34-none-win_amd64.whl
Algorithm Hash digest
SHA256 26341ade7996c018c84cde35fb2a878e28e70edff2d28efd66a35f0be40692f0
MD5 d68b172d711c23431ba2e995ee2923e3
BLAKE2b-256 3b9172df65440d485926b9d16bca72d1aead9a294e5aa0ffb41fa59a2f2d59f4

See more details on using hashes here.

File details

Details for the file regex-2015.06.10-cp34-none-win32.whl.

File metadata

File hashes

Hashes for regex-2015.06.10-cp34-none-win32.whl
Algorithm Hash digest
SHA256 2519149abc48cecd29780b223eeaea41baa56471dce056e0ab6a5a79f4332786
MD5 00ad565020f47b3b1556120019b152a7
BLAKE2b-256 2873cf54d688943ae1ae7281e9f882c563af918b3ea99eae52ab683110cf77c9

See more details on using hashes here.

File details

Details for the file regex-2015.06.10-cp33-none-win_amd64.whl.

File metadata

File hashes

Hashes for regex-2015.06.10-cp33-none-win_amd64.whl
Algorithm Hash digest
SHA256 25ea703c9aacc96eb591e4ab26eb3becb8c5eebddcdb1787c944b59130aaca5a
MD5 2d740230e7a408203ba699ca60ce14ff
BLAKE2b-256 8c9a60a05aaf6c04b1a680c78feedefed0bda8050725c0a4536887a26d8dc7f2

See more details on using hashes here.

File details

Details for the file regex-2015.06.10-cp33-none-win32.whl.

File metadata

File hashes

Hashes for regex-2015.06.10-cp33-none-win32.whl
Algorithm Hash digest
SHA256 e64d6e41f51208a2564e87b119b4ff0e01bee7d936bf70b8a7560354f3193ef6
MD5 b29d84e3afc3ab34cfd527a07562b425
BLAKE2b-256 7d33ecbffca55d8924e6e3ece1336ee5ebd94d5b67da94db9dc9ba51fe2afe20

See more details on using hashes here.

File details

Details for the file regex-2015.06.10-cp32-none-win_amd64.whl.

File metadata

File hashes

Hashes for regex-2015.06.10-cp32-none-win_amd64.whl
Algorithm Hash digest
SHA256 39c8a39add1a2b6bf05d6622d2ef48cd451ee6bcebd0a2aafb581a683dc627dd
MD5 d4adbbc8da853031fde96d12ac0371a2
BLAKE2b-256 4ca3ec03862ff0e694910cd49950a34254a60207d06b01121dd7fa170df0ad6b

See more details on using hashes here.

File details

Details for the file regex-2015.06.10-cp32-none-win32.whl.

File metadata

File hashes

Hashes for regex-2015.06.10-cp32-none-win32.whl
Algorithm Hash digest
SHA256 333a810d0fbfcce9555b1e367020efee15689c6b4621165effc0d249b268a719
MD5 384339d88c14399022d420de775e1676
BLAKE2b-256 bef0539e06116558131051cc246a8eb96124bcedb05a2802dccb4b6d23811052

See more details on using hashes here.

File details

Details for the file regex-2015.06.10-cp31-none-win_amd64.whl.

File metadata

File hashes

Hashes for regex-2015.06.10-cp31-none-win_amd64.whl
Algorithm Hash digest
SHA256 6375736e396ae634edc37eaf030c2a1b01757c30a07c7c64b52e1badcfcda117
MD5 9144c54eab2aee3bd6d615ac75b54165
BLAKE2b-256 bdd620f3bc730ba12c1fbea834f3669939defcc294dcba6b92983a32e9f5e6ef

See more details on using hashes here.

File details

Details for the file regex-2015.06.10-cp31-none-win32.whl.

File metadata

File hashes

Hashes for regex-2015.06.10-cp31-none-win32.whl
Algorithm Hash digest
SHA256 78709e153cd8152fec6ed030d85e95471f7b15c1d5d3eec74d27ee3f0ca68151
MD5 ff0e426ff5c9d5a37b03145d2f0b96fd
BLAKE2b-256 41f7ef42632d121af39c3810f65b26d21b4984bb5f5542174128b4bc3efb9dc5

See more details on using hashes here.

File details

Details for the file regex-2015.06.10-cp27-none-win_amd64.whl.

File metadata

File hashes

Hashes for regex-2015.06.10-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 ca23c729be57f2a46ebbfa1c5d5bbab47a901f752d1c93f3d527175595aa438b
MD5 a6a6466dd5508de9aa5b5b3bb5466a9b
BLAKE2b-256 b6976f31269e833831b0129f6cda3f2851d7b69f5219b8a67aa21dce991ea23f

See more details on using hashes here.

File details

Details for the file regex-2015.06.10-cp27-none-win32.whl.

File metadata

File hashes

Hashes for regex-2015.06.10-cp27-none-win32.whl
Algorithm Hash digest
SHA256 c0d1028d14098b349354c789aa0da1282aae8ab760f9c0ba705b76d53754800f
MD5 871ab2f2760ac9ef3a0bedbe8f7cf88e
BLAKE2b-256 bafbe7b807ff4660dfd89f25095a9f5e1c9b5802215eaa595a85798b85d48b14

See more details on using hashes here.

File details

Details for the file regex-2015.06.10-cp26-none-win_amd64.whl.

File metadata

File hashes

Hashes for regex-2015.06.10-cp26-none-win_amd64.whl
Algorithm Hash digest
SHA256 2114ae2397fe57a0d5748e2084e3215fb43a3f53ba6ba401e7159a38e71f4ccd
MD5 ca9c9cb04199f93e1b99dd181427e9f9
BLAKE2b-256 4113b6763c095defa361319e4f8e3139ea2aaa9d2176d1fb32b870866528246a

See more details on using hashes here.

File details

Details for the file regex-2015.06.10-cp26-none-win32.whl.

File metadata

File hashes

Hashes for regex-2015.06.10-cp26-none-win32.whl
Algorithm Hash digest
SHA256 ae24e281b56c7fd114263eec99292d1215fa108b213dac5e577aa7417519c3b7
MD5 975fe7d66bffeb5ea06c345b4b39a52c
BLAKE2b-256 7a66d4050062b01ef76514adfcfee776823dfa1fd3e8afbb51736cf07b521d04

See more details on using hashes here.

File details

Details for the file regex-2015.06.10-cp25-none-win_amd64.whl.

File metadata

File hashes

Hashes for regex-2015.06.10-cp25-none-win_amd64.whl
Algorithm Hash digest
SHA256 2e7b2469204ac69f0952509f73354e73fe476999e9d8a8c8ff25b0d286d13b6f
MD5 b94c9bd1509272e7132e83a2179d90c9
BLAKE2b-256 58528f466dfe6c8a40ef0d074e6e0cb851e39c23702ea2a5bbf8a1c8c17c305d

See more details on using hashes here.

File details

Details for the file regex-2015.06.10-cp25-none-win32.whl.

File metadata

File hashes

Hashes for regex-2015.06.10-cp25-none-win32.whl
Algorithm Hash digest
SHA256 ea5db3b5754a655830fd5088f165fb080f7038ce2371e5d0c04a3bfb2d4e6f50
MD5 d19a4668d75970c51e4cdaa46643bc53
BLAKE2b-256 05e031cf9537bf5b0092a18910539b6138ac44d5f135ea51dbc958fa06cd39dd

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page