Skip to main content

Alternative regular expression module, to replace re.

Project description

Introduction

This new regex implementation is intended eventually to replace Python’s current re module implementation.

For testing and comparison with the current ‘re’ module the new implementation is in the form of a module called ‘regex’.

Old vs new behaviour

This module has 2 behaviours:

Version 0 behaviour (old behaviour, compatible with the current re module):

Indicated by the VERSION0 or V0 flag, or (?V0) in the pattern.

.split won’t split a string at a zero-width match.

Zero-width matches are handled like in the re module.

Inline flags apply to the entire pattern, and they can’t be turned off.

Only simple sets are supported.

Case-insensitive matches in Unicode use simple case-folding by default.

Version 1 behaviour (new behaviour, different from the current re module):

Indicated by the VERSION1 or V1 flag, or (?V1) in the pattern.

.split will split a string at a zero-width match.

Zero-width matches are handled like in Perl and PCRE.

Inline flags apply to the end of the group or pattern, and they can be turned off.

Nested sets and set operations are supported.

Case-insensitive matches in Unicode use full case-folding by default.

If no version is specified, the regex module will default to regex.DEFAULT_VERSION. In the short term this will be VERSION0, but in the longer term it will be VERSION1.

Case-insensitive matches in Unicode

The regex module supports both simple and full case-folding for case-insensitive matches in Unicode. Use of full case-folding can be turned on using the FULLCASE or F flag, or (?f) in the pattern. Please note that this flag affects how the IGNORECASE flag works; the FULLCASE flag itself does not turn on case-insensitive matching.

In the version 0 behaviour, the flag is off by default.

In the version 1 behaviour, the flag is on by default.

Nested sets and set operations

It’s not possible to support both simple sets, as used in the re module, and nested sets at the same time because of a difference in the meaning of an unescaped "[" in a set.

For example, the pattern [[a-z]--[aeiou]] is treated in the version 0 behaviour (simple sets, compatible with the re module) as:

Set containing “[” and the letters “a” to “z”

Literal “–”

Set containing letters “a”, “e”, “i”, “o”, “u”

but in the version 1 behaviour (nested sets, enhanced behaviour) as:

Set which is:

Set containing the letters “a” to “z”

but excluding:

Set containing the letters “a”, “e”, “i”, “o”, “u”

Version 0 behaviour: only simple sets are supported.

Version 1 behaviour: nested sets and set operations are supported.

Flags

There are 2 kinds of flag: scoped and global. Scoped flags can apply to only part of a pattern and can be turned on or off; global flags apply to the entire pattern and can only be turned on.

The scoped flags are: FULLCASE, IGNORECASE, MULTILINE, DOTALL, VERBOSE, WORD.

The global flags are: ASCII, BESTMATCH, ENHANCEMATCH, LOCALE, POSIX, REVERSE, UNICODE, VERSION0, VERSION1.

If neither the ASCII, LOCALE nor UNICODE flag is specified, it will default to UNICODE if the regex pattern is a Unicode string and ASCII if it’s a bytestring.

The ENHANCEMATCH flag makes fuzzy matching attempt to improve the fit of the next match that it finds.

The BESTMATCH flag makes fuzzy matching search for the best match instead of the next match.

Notes on named capture groups

All capture groups have a group number, starting from 1.

Groups with the same group name will have the same group number, and groups with a different group name will have a different group number.

The same name can be used by more than one group, with later captures ‘overwriting’ earlier captures. All of the captures of the group will be available from the captures method of the match object.

Group numbers will be reused across different branches of a branch reset, eg. (?|(first)|(second)) has only group 1. If capture groups have different group names then they will, of course, have different group numbers, eg. (?|(?P<foo>first)|(?P<bar>second)) has group 1 (“foo”) and group 2 (“bar”).

In the regex (\s+)(?|(?P<foo>[A-Z]+)|(\w+) (?<foo>[0-9]+) there are 2 groups:

  1. (\s+) is group 1.

  2. (?P<foo>[A-Z]+) is group 2, also called “foo”.

  3. (\w+) is group 2 because of the branch reset.

  4. (?<foo>[0-9]+) is group 2 because it’s called “foo”.

If you want to prevent (\w+) from being group 2, you need to name it (different name, different group number).

Multithreading

The regex module releases the GIL during matching on instances of the built-in (immutable) string classes, enabling other Python threads to run concurrently. It is also possible to force the regex module to release the GIL during matching by calling the matching methods with the keyword argument concurrent=True. The behaviour is undefined if the string changes during matching, so use it only when it is guaranteed that that won’t happen.

Building for 64-bits

If the source files are built for a 64-bit target then the string positions will also be 64-bit.

Unicode

This module supports Unicode 8.0.

Full Unicode case-folding is supported.

Additional features

The issue numbers relate to the Python bug tracker, except where listed as “Hg issue”.

  • Added POSIX matching (leftmost longest) (Hg issue 150)

    The POSIX standard for regex is to return the leftmost longest match. This can be turned on using the POSIX flag ((?p)).

    Examples:

    >>> # Normal matching.
    >>> regex.search(r'Mr|Mrs', 'Mrs')
    <regex.Match object; span=(0, 2), match='Mr'>
    >>> regex.search(r'one(self)?(selfsufficient)?', 'oneselfsufficient')
    <regex.Match object; span=(0, 7), match='oneself'>
    >>> # POSIX matching.
    >>> regex.search(r'(?p)Mr|Mrs', 'Mrs')
    <regex.Match object; span=(0, 3), match='Mrs'>
    >>> regex.search(r'(?p)one(self)?(selfsufficient)?', 'oneselfsufficient')
    <regex.Match object; span=(0, 17), match='oneselfsufficient'>

    Note that it will take longer to find matches because when it finds a match at a certain position, it won’t return that immediately, but will keep looking to see if there’s another longer match there.

  • Added (?(DEFINE)...) (Hg issue 152)

    If there’s no group called “DEFINE”, then … will be ignored, but any group definitions within it will be available.

    Examples:

    >>> regex.search(r'(?(DEFINE)(?P<quant>\d+)(?P<item>\w+))(?&quant) (?&item)', '5 elephants')
    <regex.Match object; span=(0, 11), match='5 elephants'>
  • Added (*PRUNE), (*SKIP) and (*FAIL) (Hg issue 153)

    (*PRUNE) discards the backtracking info up to that point. When used in an atomic group or a lookaround, it won’t affect the enclosing pattern.

    (*SKIP) is similar to (*PRUNE), except that it also sets where in the text the next attempt to match will start. When used in an atomic group or a lookaround, it won’t affect the enclosing pattern.

    (*FAIL) causes immediate backtracking. (*F) is a permitted abbreviation.

  • Added \K (Hg issue 151)

    Keeps the part of the entire match after the position where \K occurred; the part before it is discarded.

    It does not affect what capture groups return.

    Examples:

    >>> m = regex.search(r'(\w\w\K\w\w\w)', 'abcdef')
    >>> m[0]
    'cde'
    >>> m[1]
    'abcde'
    >>>
    >>> m = regex.search(r'(?r)(\w\w\K\w\w\w)', 'abcdef')
    >>> m[0]
    'bc'
    >>> m[1]
    'bcdef'
  • Added capture subscripting for expandf and subf/subfn (Hg issue 133) (Python 2.6 and above)

    You can now use subscripting to get the captures of a repeated capture group.

    Examples:

    >>> m = regex.match(r"(\w)+", "abc")
    >>> m.expandf("{1}")
    'c'
    >>> m.expandf("{1[0]} {1[1]} {1[2]}")
    'a b c'
    >>> m.expandf("{1[-1]} {1[-2]} {1[-3]}")
    'c b a'
    >>>
    >>> m = regex.match(r"(?P<letter>\w)+", "abc")
    >>> m.expandf("{letter}")
    'c'
    >>> m.expandf("{letter[0]} {letter[1]} {letter[2]}")
    'a b c'
    >>> m.expandf("{letter[-1]} {letter[-2]} {letter[-3]}")
    'c b a'
  • Added support for referring to a group by number using (?P=...).

    This is in addition to the existing \g<...>.

  • Fixed the handling of locale-sensitive regexes.

    The LOCALE flag is intended for legacy code and has limited support. You’re still recommended to use Unicode instead.

  • Added partial matches (Hg issue 102)

    A partial match is one that matches up to the end of string, but that string has been truncated and you want to know whether a complete match could be possible if the string had not been truncated.

    Partial matches are supported by match, search, fullmatch and finditer with the partial keyword argument.

    Match objects have a partial attribute, which is True if it’s a partial match.

    For example, if you wanted a user to enter a 4-digit number and check it character by character as it was being entered:

    >>> pattern = regex.compile(r'\d{4}')
    
    >>> # Initially, nothing has been entered:
    >>> print(pattern.fullmatch('', partial=True))
    <regex.Match object; span=(0, 0), match='', partial=True>
    
    >>> # An empty string is OK, but it's only a partial match.
    >>> # The user enters a letter:
    >>> print(pattern.fullmatch('a', partial=True))
    None
    >>> # It'll never match.
    
    >>> # The user deletes that and enters a digit:
    >>> print(pattern.fullmatch('1', partial=True))
    <regex.Match object; span=(0, 1), match='1', partial=True>
    >>> # It matches this far, but it's only a partial match.
    
    >>> # The user enters 2 more digits:
    >>> print(pattern.fullmatch('123', partial=True))
    <regex.Match object; span=(0, 3), match='123', partial=True>
    >>> # It matches this far, but it's only a partial match.
    
    >>> # The user enters another digit:
    >>> print(pattern.fullmatch('1234', partial=True))
    <regex.Match object; span=(0, 4), match='1234'>
    >>> # It's a complete match.
    
    >>> # If the user enters another digit:
    >>> print(pattern.fullmatch('12345', partial=True))
    None
    >>> # It's no longer a match.
    
    >>> # This is a partial match:
    >>> pattern.match('123', partial=True).partial
    True
    
    >>> # This is a complete match:
    >>> pattern.match('1233', partial=True).partial
    False
    
  • * operator not working correctly with sub() (Hg issue 106)

    Sometimes it’s not clear how zero-width matches should be handled. For example, should .* match 0 characters directly after matching >0 characters?

    Most regex implementations follow the lead of Perl (PCRE), but the re module sometimes doesn’t. The Perl behaviour appears to be the most common (and the re module is sometimes definitely wrong), so in version 1 the regex module follows the Perl behaviour, whereas in version 0 it follows the legacy re behaviour.

    Examples:

    # Version 0 behaviour (like re)
    >>> regex.sub('(?V0).*', 'x', 'test')
    'x'
    >>> regex.sub('(?V0).*?', '|', 'test')
    '|t|e|s|t|'
    
    # Version 1 behaviour (like Perl)
    >>> regex.sub('(?V1).*', 'x', 'test')
    'xx'
    >>> regex.sub('(?V1).*?', '|', 'test')
    '|||||||||'
  • re.group() should never return a bytearray (issue #18468)

    For compatibility with the re module, the regex module returns all matching bytestrings as bytes, starting from Python 3.4.

    Examples:

    >>> # Python 3.4 and later
    >>> import regex
    >>> regex.match(b'.', bytearray(b'a')).group()
    b'a'
    
    >>> # Python 3.1-3.3
    >>> import regex
    >>> regex.match(b'.', bytearray(b'a')).group()
    bytearray(b'a')
  • Added capturesdict (Hg issue 86)

    capturesdict is a combination of groupdict and captures:

    groupdict returns a dict of the named groups and the last capture of those groups.

    captures returns a list of all the captures of a group

    capturesdict returns a dict of the named groups and lists of all the captures of those groups.

    Examples:

    >>> import regex
    >>> m = regex.match(r"(?:(?P<word>\w+) (?P<digits>\d+)\n)+", "one 1\ntwo 2\nthree 3\n")
    >>> m.groupdict()
    {'word': 'three', 'digits': '3'}
    >>> m.captures("word")
    ['one', 'two', 'three']
    >>> m.captures("digits")
    ['1', '2', '3']
    >>> m.capturesdict()
    {'word': ['one', 'two', 'three'], 'digits': ['1', '2', '3']}
  • Allow duplicate names of groups (Hg issue 87)

    Group names can now be duplicated.

    Examples:

    >>> import regex
    >>>
    >>> # With optional groups:
    >>>
    >>> # Both groups capture, the second capture 'overwriting' the first.
    >>> m = regex.match(r"(?P<item>\w+)? or (?P<item>\w+)?", "first or second")
    >>> m.group("item")
    'second'
    >>> m.captures("item")
    ['first', 'second']
    >>> # Only the second group captures.
    >>> m = regex.match(r"(?P<item>\w+)? or (?P<item>\w+)?", " or second")
    >>> m.group("item")
    'second'
    >>> m.captures("item")
    ['second']
    >>> # Only the first group captures.
    >>> m = regex.match(r"(?P<item>\w+)? or (?P<item>\w+)?", "first or ")
    >>> m.group("item")
    'first'
    >>> m.captures("item")
    ['first']
    >>>
    >>> # With mandatory groups:
    >>>
    >>> # Both groups capture, the second capture 'overwriting' the first.
    >>> m = regex.match(r"(?P<item>\w*) or (?P<item>\w*)?", "first or second")
    >>> m.group("item")
    'second'
    >>> m.captures("item")
    ['first', 'second']
    >>> # Again, both groups capture, the second capture 'overwriting' the first.
    >>> m = regex.match(r"(?P<item>\w*) or (?P<item>\w*)", " or second")
    >>> m.group("item")
    'second'
    >>> m.captures("item")
    ['', 'second']
    >>> # And yet again, both groups capture, the second capture 'overwriting' the first.
    >>> m = regex.match(r"(?P<item>\w*) or (?P<item>\w*)", "first or ")
    >>> m.group("item")
    ''
    >>> m.captures("item")
    ['first', '']
  • Added fullmatch (issue #16203)

    fullmatch behaves like match, except that it must match all of the string.

    Examples:

    >>> import regex
    >>> print(regex.fullmatch(r"abc", "abc").span())
    (0, 3)
    >>> print(regex.fullmatch(r"abc", "abcx"))
    None
    >>> print(regex.fullmatch(r"abc", "abcx", endpos=3).span())
    (0, 3)
    >>> print(regex.fullmatch(r"abc", "xabcy", pos=1, endpos=4).span())
    (1, 4)
    >>>
    >>> regex.match(r"a.*?", "abcd").group(0)
    'a'
    >>> regex.fullmatch(r"a.*?", "abcd").group(0)
    'abcd'
  • Added subf and subfn (Python 2.6 and above)

    subf and subfn are alternatives to sub and subn respectively. When passed a replacement string, they treat it as a format string.

    Examples:

    >>> import regex
    >>> regex.subf(r"(\w+) (\w+)", "{0} => {2} {1}", "foo bar")
    'foo bar => bar foo'
    >>> regex.subf(r"(?P<word1>\w+) (?P<word2>\w+)", "{word2} {word1}", "foo bar")
    'bar foo'
  • Added expandf to match object (Python 2.6 and above)

    expandf is an alternative to expand. When passed a replacement string, it treats it as a format string.

    Examples:

    >>> import regex
    >>> m = regex.match(r"(\w+) (\w+)", "foo bar")
    >>> m.expandf("{0} => {2} {1}")
    'foo bar => bar foo'
    >>>
    >>> m = regex.match(r"(?P<word1>\w+) (?P<word2>\w+)", "foo bar")
    >>> m.expandf("{word2} {word1}")
    'bar foo'
  • Detach searched string

    A match object contains a reference to the string that was searched, via its string attribute. The match object now has a detach_string method that will ‘detach’ that string, making it available for garbage collection (this might save valuable memory if that string is very large).

    Example:

    >>> import regex
    >>> m = regex.search(r"\w+", "Hello world")
    >>> print(m.group())
    Hello
    >>> print(m.string)
    Hello world
    >>> m.detach_string()
    >>> print(m.group())
    Hello
    >>> print(m.string)
    None
  • Characters in a group name (issue #14462)

    A group name can now contain the same characters as an identifier. These are different in Python 2 and Python 3.

  • Recursive patterns (Hg issue 27)

    Recursive and repeated patterns are supported.

    (?R) or (?0) tries to match the entire regex recursively. (?1), (?2), etc, try to match the relevant capture group.

    (?&name) tries to match the named capture group.

    Examples:

    >>> regex.match(r"(Tarzan|Jane) loves (?1)", "Tarzan loves Jane").groups()
    ('Tarzan',)
    >>> regex.match(r"(Tarzan|Jane) loves (?1)", "Jane loves Tarzan").groups()
    ('Jane',)
    
    >>> m = regex.search(r"(\w)(?:(?R)|(\w?))\1", "kayak")
    >>> m.group(0, 1, 2)
    ('kayak', 'k', None)

    The first two examples show how the subpattern within the capture group is reused, but is _not_ itself a capture group. In other words, "(Tarzan|Jane) loves (?1)" is equivalent to "(Tarzan|Jane) loves (?:Tarzan|Jane)".

    It’s possible to backtrack into a recursed or repeated group.

    You can’t call a group if there is more than one group with that group name or group number ("ambiguous group reference"). For example, (?P<foo>\w+) (?P<foo>\w+) (?&foo)? has 2 groups called “foo” (both group 1) and (?|([A-Z]+)|([0-9]+)) (?1)? has 2 groups with group number 1.

    The alternative forms (?P>name) and (?P&name) are also supported.

  • repr(regex) doesn’t include actual regex (issue #13592)

    The repr of a compiled regex is now in the form of a eval-able string. For example:

    >>> r = regex.compile("foo", regex.I)
    >>> repr(r)
    "regex.Regex('foo', flags=regex.I | regex.V0)"
    >>> r
    regex.Regex('foo', flags=regex.I | regex.V0)

    The regex module has Regex as an alias for the ‘compile’ function.

  • Improve the repr for regular expression match objects (issue #17087)

    The repr of a match object is now a more useful form. For example:

    >>> regex.search(r"\d+", "abc012def")
    <regex.Match object; span=(3, 6), match='012'>
  • Python lib re cannot handle Unicode properly due to narrow/wide bug (issue #12729)

    The source code of the regex module has been updated to support PEP 393 (“Flexible String Representation”), which is new in Python 3.3.

  • Full Unicode case-folding is supported.

    In version 1 behaviour, the regex module uses full case-folding when performing case-insensitive matches in Unicode.

    Examples (in Python 3):

    >>> regex.match(r"(?iV1)strasse", "stra\N{LATIN SMALL LETTER SHARP S}e").span()
    (0, 6)
    >>> regex.match(r"(?iV1)stra\N{LATIN SMALL LETTER SHARP S}e", "STRASSE").span()
    (0, 7)
    

    In version 0 behaviour, it uses simple case-folding for backward compatibility with the re module.

  • Approximate “fuzzy” matching (Hg issue 12, Hg issue 41, Hg issue 109)

    Regex usually attempts an exact match, but sometimes an approximate, or “fuzzy”, match is needed, for those cases where the text being searched may contain errors in the form of inserted, deleted or substituted characters.

    A fuzzy regex specifies which types of errors are permitted, and, optionally, either the minimum and maximum or only the maximum permitted number of each type. (You cannot specify only a minimum.)

    The 3 types of error are:

    • Insertion, indicated by “i”

    • Deletion, indicated by “d”

    • Substitution, indicated by “s”

    In addition, “e” indicates any type of error.

    The fuzziness of a regex item is specified between “{” and “}” after the item.

    Examples:

    foo match “foo” exactly

    (?:foo){i} match “foo”, permitting insertions

    (?:foo){d} match “foo”, permitting deletions

    (?:foo){s} match “foo”, permitting substitutions

    (?:foo){i,s} match “foo”, permitting insertions and substitutions

    (?:foo){e} match “foo”, permitting errors

    If a certain type of error is specified, then any type not specified will not be permitted.

    In the following examples I’ll omit the item and write only the fuzziness.

    {i<=3} permit at most 3 insertions, but no other types

    {d<=3} permit at most 3 deletions, but no other types

    {s<=3} permit at most 3 substitutions, but no other types

    {i<=1,s<=2} permit at most 1 insertion and at most 2 substitutions, but no deletions

    {e<=3} permit at most 3 errors

    {1<=e<=3} permit at least 1 and at most 3 errors

    {i<=2,d<=2,e<=3} permit at most 2 insertions, at most 2 deletions, at most 3 errors in total, but no substitutions

    It’s also possible to state the costs of each type of error and the maximum permitted total cost.

    Examples:

    {2i+2d+1s<=4} each insertion costs 2, each deletion costs 2, each substitution costs 1, the total cost must not exceed 4

    {i<=1,d<=1,s<=1,2i+2d+1s<=4} at most 1 insertion, at most 1 deletion, at most 1 substitution; each insertion costs 2, each deletion costs 2, each substitution costs 1, the total cost must not exceed 4

    You can also use “<” instead of “<=” if you want an exclusive minimum or maximum:

    {e<=3} permit up to 3 errors

    {e<4} permit fewer than 4 errors

    {0<e<4} permit more than 0 but fewer than 4 errors

    By default, fuzzy matching searches for the first match that meets the given constraints. The ENHANCEMATCH flag will cause it to attempt to improve the fit (i.e. reduce the number of errors) of the match that it has found.

    The BESTMATCH flag will make it search for the best match instead.

    Further examples to note:

    regex.search("(dog){e}", "cat and dog")[1] returns "cat" because that matches "dog" with 3 errors, which is within the limit (an unlimited number of errors is permitted).

    regex.search("(dog){e<=1}", "cat and dog")[1] returns " dog" (with a leading space) because that matches "dog" with 1 error, which is within the limit (1 error is permitted).

    regex.search("(?e)(dog){e<=1}", "cat and dog")[1] returns "dog" (without a leading space) because the fuzzy search matches " dog" with 1 error, which is within the limit (1 error is permitted), and the (?e) then makes it attempt a better fit.

    In the first two examples there are perfect matches later in the string, but in neither case is it the first possible match.

    The match object has an attribute fuzzy_counts which gives the total number of substitutions, insertions and deletions.

    >>> # A 'raw' fuzzy match:
    >>> regex.fullmatch(r"(?:cats|cat){e<=1}", "cat").fuzzy_counts
    (0, 0, 1)
    >>> # 0 substitutions, 0 insertions, 1 deletion.
    
    >>> # A better match might be possible if the ENHANCEMATCH flag used:
    >>> regex.fullmatch(r"(?e)(?:cats|cat){e<=1}", "cat").fuzzy_counts
    (0, 0, 0)
    >>> # 0 substitutions, 0 insertions, 0 deletions.
    
  • Named lists (Hg issue 11)

    \L<name>

    There are occasions where you may want to include a list (actually, a set) of options in a regex.

    One way is to build the pattern like this:

    p = regex.compile(r"first|second|third|fourth|fifth")

    but if the list is large, parsing the resulting regex can take considerable time, and care must also be taken that the strings are properly escaped if they contain any character that has a special meaning in a regex, and that if there is a shorter string that occurs initially in a longer string that the longer string is listed before the shorter one, for example, “cats” before “cat”.

    The new alternative is to use a named list:

    option_set = ["first", "second", "third", "fourth", "fifth"]
    p = regex.compile(r"\L<options>", options=option_set)

    The order of the items is irrelevant, they are treated as a set. The named lists are available as the .named_lists attribute of the pattern object

    >>> print(p.named_lists)
    {'options': frozenset({'second', 'fifth', 'fourth', 'third', 'first'})}
  • Start and end of word

    \m matches at the start of a word.

    \M matches at the end of a word.

    Compare with \b, which matches at the start or end of a word.

  • Unicode line separators

    Normally the only line separator is \n (\x0A), but if the WORD flag is turned on then the line separators are the pair \x0D\x0A, and \x0A, \x0B, \x0C and \x0D, plus \x85, \u2028 and \u2029 when working with Unicode.

    This affects the regex dot ".", which, with the DOTALL flag turned off, matches any character except a line separator. It also affects the line anchors ^ and $ (in multiline mode).

  • Set operators

    Version 1 behaviour only

    Set operators have been added, and a set [...] can include nested sets.

    The operators, in order of increasing precedence, are:

    || for union (“x||y” means “x or y”)

    ~~ (double tilde) for symmetric difference (“x~~y” means “x or y, but not both”)

    && for intersection (“x&&y” means “x and y”)

    -- (double dash) for difference (“x–y” means “x but not y”)

    Implicit union, ie, simple juxtaposition like in [ab], has the highest precedence. Thus, [ab&&cd] is the same as [[a||b]&&[c||d]].

    Examples:

    [ab] # Set containing ‘a’ and ‘b’

    [a-z] # Set containing ‘a’ .. ‘z’

    [[a-z]--[qw]] # Set containing ‘a’ .. ‘z’, but not ‘q’ or ‘w’

    [a-z--qw] # Same as above

    [\p{L}--QW] # Set containing all letters except ‘Q’ and ‘W’

    [\p{N}--[0-9]] # Set containing all numbers except ‘0’ .. ‘9’

    [\p{ASCII}&&\p{Letter}] # Set containing all characters which are ASCII and letter

  • regex.escape (issue #2650)

    regex.escape has an additional keyword parameter special_only. When True, only ‘special’ regex characters, such as ‘?’, are escaped.

    Examples:

    >>> regex.escape("foo!?")
    'foo\\!\\?'
    >>> regex.escape("foo!?", special_only=True)
    'foo!\\?'
    
  • Repeated captures (issue #7132)

    A match object has additional methods which return information on all the successful matches of a repeated capture group. These methods are:

    matchobject.captures([group1, ...])

    Returns a list of the strings matched in a group or groups. Compare with matchobject.group([group1, ...]).

    matchobject.starts([group])

    Returns a list of the start positions. Compare with matchobject.start([group]).

    matchobject.ends([group])

    Returns a list of the end positions. Compare with matchobject.end([group]).

    matchobject.spans([group])

    Returns a list of the spans. Compare with matchobject.span([group]).

    Examples:

    >>> m = regex.search(r"(\w{3})+", "123456789")
    >>> m.group(1)
    '789'
    >>> m.captures(1)
    ['123', '456', '789']
    >>> m.start(1)
    6
    >>> m.starts(1)
    [0, 3, 6]
    >>> m.end(1)
    9
    >>> m.ends(1)
    [3, 6, 9]
    >>> m.span(1)
    (6, 9)
    >>> m.spans(1)
    [(0, 3), (3, 6), (6, 9)]
    
  • Atomic grouping (issue #433030)

    (?>...)

    If the following pattern subsequently fails, then the subpattern as a whole will fail.

  • Possessive quantifiers.

    (?:...)?+ ; (?:...)*+ ; (?:...)++ ; (?:...){min,max}+

    The subpattern is matched up to ‘max’ times. If the following pattern subsequently fails, then all of the repeated subpatterns will fail as a whole. For example, (?:...)++ is equivalent to (?>(?:...)+).

  • Scoped flags (issue #433028)

    (?flags-flags:...)

    The flags will apply only to the subpattern. Flags can be turned on or off.

  • Inline flags (issue #433024, issue #433027)

    (?flags-flags)

    Version 0 behaviour: the flags apply to the entire pattern, and they can’t be turned off.

    Version 1 behaviour: the flags apply to the end of the group or pattern, and they can be turned on or off.

  • Repeated repeats (issue #2537)

    A regex like ((x|y+)*)* will be accepted and will work correctly, but should complete more quickly.

  • Definition of ‘word’ character (issue #1693050)

    The definition of a ‘word’ character has been expanded for Unicode. It now conforms to the Unicode specification at http://www.unicode.org/reports/tr29/. This applies to \w, \W, \b and \B.

  • Groups in lookahead and lookbehind (issue #814253)

    Groups and group references are permitted in both lookahead and lookbehind.

  • Variable-length lookbehind

    A lookbehind can match a variable-length string.

  • Correct handling of charset with ignore case flag (issue #3511)

    Ranges within charsets are handled correctly when the ignore-case flag is turned on.

  • Unmatched group in replacement (issue #1519638)

    An unmatched group is treated as an empty string in a replacement template.

  • ‘Pathological’ patterns (issue #1566086, issue #1662581, issue #1448325, issue #1721518, issue #1297193)

    ‘Pathological’ patterns should complete more quickly.

  • Flags argument for regex.split, regex.sub and regex.subn (issue #3482)

    regex.split, regex.sub and regex.subn support a ‘flags’ argument.

  • Pos and endpos arguments for regex.sub and regex.subn

    regex.sub and regex.subn support ‘pos’ and ‘endpos’ arguments.

  • ‘Overlapped’ argument for regex.findall and regex.finditer

    regex.findall and regex.finditer support an ‘overlapped’ flag which permits overlapped matches.

  • Unicode escapes (issue #3665)

    The Unicode escapes \uxxxx and \Uxxxxxxxx are supported.

  • Large patterns (issue #1160)

    Patterns can be much larger.

  • Zero-width match with regex.finditer (issue #1647489)

    regex.finditer behaves correctly when it splits at a zero-width match.

  • Zero-width split with regex.split (issue #3262)

    Version 0 behaviour: a string won’t be split at a zero-width match.

    Version 1 behaviour: a string will be split at a zero-width match.

  • Splititer

    regex.splititer has been added. It’s a generator equivalent of regex.split.

  • Subscripting for groups

    A match object accepts access to the captured groups via subscripting and slicing:

    >>> m = regex.search(r"(?P<before>.*?)(?P<num>\d+)(?P<after>.*)", "pqr123stu")
    >>> print m["before"]
    pqr
    >>> print m["num"]
    123
    >>> print m["after"]
    stu
    >>> print len(m)
    4
    >>> print m[:]
    ('pqr123stu', 'pqr', '123', 'stu')
    
  • Named groups

    Groups can be named with (?<name>...) as well as the current (?P<name>...).

  • Group references

    Groups can be referenced within a pattern with \g<name>. This also allows there to be more than 99 groups.

  • Named characters

    \N{name}

    Named characters are supported. (Note: only those known by Python’s Unicode database are supported.)

  • Unicode codepoint properties, including scripts and blocks

    \p{property=value}; \P{property=value}; \p{value} ; \P{value}

    Many Unicode properties are supported, including blocks and scripts. \p{property=value} or \p{property:value} matches a character whose property property has value value. The inverse of \p{property=value} is \P{property=value} or \p{^property=value}.

    If the short form \p{value} is used, the properties are checked in the order: General_Category, Script, Block, binary property:

    1. Latin, the ‘Latin’ script (Script=Latin).

    2. Cyrillic, the ‘Cyrillic’ script (Script=Cyrillic).

    3. BasicLatin, the ‘BasicLatin’ block (Block=BasicLatin).

    4. Alphabetic, the ‘Alphabetic’ binary property (Alphabetic=Yes).

    A short form starting with Is indicates a script or binary property:

    1. IsLatin, the ‘Latin’ script (Script=Latin).

    2. IsCyrillic, the ‘Cyrillic’ script (Script=Cyrillic).

    3. IsAlphabetic, the ‘Alphabetic’ binary property (Alphabetic=Yes).

    A short form starting with In indicates a block property:

    1. InBasicLatin, the ‘BasicLatin’ block (Block=BasicLatin).

    2. InCyrillic, the ‘Cyrillic’ block (Block=Cyrillic).

  • POSIX character classes

    [[:alpha:]]; [[:^alpha:]]

    POSIX character classes are supported. These are normally treated as an alternative form of \p{...}.

    The exceptions are alnum, digit, punct and xdigit, whose definitions are different from those of Unicode.

    [[:alnum:]] is equivalent to \p{posix_alnum}.

    [[:digit:]] is equivalent to \p{posix_digit}.

    [[:punct:]] is equivalent to \p{posix_punct}.

    [[:xdigit:]] is equivalent to \p{posix_xdigit}.

  • Search anchor

    \G

    A search anchor has been added. It matches at the position where each search started/continued and can be used for contiguous matches or in negative variable-length lookbehinds to limit how far back the lookbehind goes:

    >>> regex.findall(r"\w{2}", "abcd ef")
    ['ab', 'cd', 'ef']
    >>> regex.findall(r"\G\w{2}", "abcd ef")
    ['ab', 'cd']
    
    1. The search starts at position 0 and matches 2 letters ‘ab’.

    2. The search continues at position 2 and matches 2 letters ‘cd’.

    3. The search continues at position 4 and fails to match any letters.

    4. The anchor stops the search start position from being advanced, so there are no more results.

  • Reverse searching

    Searches can now work backwards:

    >>> regex.findall(r".", "abc")
    ['a', 'b', 'c']
    >>> regex.findall(r"(?r).", "abc")
    ['c', 'b', 'a']
    

    Note: the result of a reverse search is not necessarily the reverse of a forward search:

    >>> regex.findall(r"..", "abcde")
    ['ab', 'cd']
    >>> regex.findall(r"(?r)..", "abcde")
    ['de', 'bc']
    
  • Matching a single grapheme

    \X

    The grapheme matcher is supported. It now conforms to the Unicode specification at http://www.unicode.org/reports/tr29/.

  • Branch reset

    (?|…|…)

    Capture group numbers will be reused across the alternatives, but groups with different names will have different group numbers.

    Examples:: >>> import regex >>> regex.match(r”(?|(first)|(second))”, “first”).groups() (‘first’,) >>> regex.match(r”(?|(first)|(second))”, “second”).groups() (‘second’,)

    Note that there is only one group.

  • Default Unicode word boundary

    The WORD flag changes the definition of a ‘word boundary’ to that of a default Unicode word boundary. This applies to \b and \B.

  • SRE engine do not release the GIL (issue #1366311)

    The regex module can release the GIL during matching (see the above section on multithreading).

    Iterators can be safely shared across threads.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

regex-2015.10.01.tar.gz (564.4 kB view details)

Uploaded Source

Built Distributions

regex-2015.10.01-cp35-none-win_amd64.whl (230.4 kB view details)

Uploaded CPython 3.5Windows x86-64

regex-2015.10.01-cp35-none-win32.whl (224.8 kB view details)

Uploaded CPython 3.5Windows x86

regex-2015.10.01-cp34-none-win_amd64.whl (230.5 kB view details)

Uploaded CPython 3.4Windows x86-64

regex-2015.10.01-cp34-none-win32.whl (224.8 kB view details)

Uploaded CPython 3.4Windows x86

regex-2015.10.01-cp33-none-win_amd64.whl (230.5 kB view details)

Uploaded CPython 3.3Windows x86-64

regex-2015.10.01-cp33-none-win32.whl (224.4 kB view details)

Uploaded CPython 3.3Windows x86

regex-2015.10.01-cp32-none-win_amd64.whl (229.6 kB view details)

Uploaded CPython 3.2Windows x86-64

regex-2015.10.01-cp32-none-win32.whl (223.6 kB view details)

Uploaded CPython 3.2Windows x86

regex-2015.10.01-cp31-none-win_amd64.whl (229.6 kB view details)

Uploaded CPython 3.1Windows x86-64

regex-2015.10.01-cp31-none-win32.whl (223.6 kB view details)

Uploaded CPython 3.1Windows x86

regex-2015.10.01-cp27-none-win_amd64.whl (229.7 kB view details)

Uploaded CPython 2.7Windows x86-64

regex-2015.10.01-cp27-none-win32.whl (223.6 kB view details)

Uploaded CPython 2.7Windows x86

regex-2015.10.01-cp26-none-win_amd64.whl (229.6 kB view details)

Uploaded CPython 2.6Windows x86-64

regex-2015.10.01-cp26-none-win32.whl (223.5 kB view details)

Uploaded CPython 2.6Windows x86

regex-2015.10.01-cp25-none-win_amd64.whl (227.7 kB view details)

Uploaded CPython 2.5Windows x86-64

regex-2015.10.01-cp25-none-win32.whl (222.2 kB view details)

Uploaded CPython 2.5Windows x86

File details

Details for the file regex-2015.10.01.tar.gz.

File metadata

  • Download URL: regex-2015.10.01.tar.gz
  • Upload date:
  • Size: 564.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for regex-2015.10.01.tar.gz
Algorithm Hash digest
SHA256 44fa9c4b6824f2288b24b9709ade1924fca821c380795e5f73a7e91098830aec
MD5 3649ca8212e1368084885d8d54775ef4
BLAKE2b-256 c4b5152048f9754c1804c91b525f68f39beda4cbc0c68f90c8e87694705ef426

See more details on using hashes here.

File details

Details for the file regex-2015.10.01-cp35-none-win_amd64.whl.

File metadata

File hashes

Hashes for regex-2015.10.01-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 9467acbd719d6c27371142e830f60469fec5cf5226a1ced5c4e16632f3370124
MD5 eccf4fe0ada404b701beb0a2e01f8170
BLAKE2b-256 87f52843318974efc88b85c69ed1fffc2a41eb97a74e520b2b49a33a34589257

See more details on using hashes here.

File details

Details for the file regex-2015.10.01-cp35-none-win32.whl.

File metadata

File hashes

Hashes for regex-2015.10.01-cp35-none-win32.whl
Algorithm Hash digest
SHA256 f0d5b2a33d3e26091ce279915b5fc27198d5b5123a93254be0e568f4bca5e477
MD5 f79ba185f829041c5b9d786c5e04fe2b
BLAKE2b-256 cc4dde985575d1d1444cb4c632ad345d5760f2d1fb4d3197d1a8fa04801a10b9

See more details on using hashes here.

File details

Details for the file regex-2015.10.01-cp34-none-win_amd64.whl.

File metadata

File hashes

Hashes for regex-2015.10.01-cp34-none-win_amd64.whl
Algorithm Hash digest
SHA256 87a8c3793cdc53ee9f090751119ed20cfa703dd0782dd805a424b878e3974ff5
MD5 b8a8aab5e3e3f36c96d283053d57c473
BLAKE2b-256 f2a5add0b7529504fe6382a272a6364792c84eed5840901524e80d1252944004

See more details on using hashes here.

File details

Details for the file regex-2015.10.01-cp34-none-win32.whl.

File metadata

File hashes

Hashes for regex-2015.10.01-cp34-none-win32.whl
Algorithm Hash digest
SHA256 faa1c30dabeea5f3e002ca9980b352f62033a3094cb2143734df6c61df505802
MD5 36013660006bd2dbe8d09fe729e3676c
BLAKE2b-256 b5c59435653a405d4417b7d3d4a2961754f49a79fc331a7a6a1557eefb599a48

See more details on using hashes here.

File details

Details for the file regex-2015.10.01-cp33-none-win_amd64.whl.

File metadata

File hashes

Hashes for regex-2015.10.01-cp33-none-win_amd64.whl
Algorithm Hash digest
SHA256 49681de3be8b3bced843cc14336d0d3c95d56663ca3715516d825b55c810edcd
MD5 8b670ec5ce07364d4f76d784d96350f2
BLAKE2b-256 f4c1be12249dd2438c0963a69d5295c143fd1f2a7b0af30813c90e6dc7986e71

See more details on using hashes here.

File details

Details for the file regex-2015.10.01-cp33-none-win32.whl.

File metadata

File hashes

Hashes for regex-2015.10.01-cp33-none-win32.whl
Algorithm Hash digest
SHA256 dc62497f115b1a7e90d38582665674dbe874001c419b60e5e8377e8ce1cd0c4f
MD5 e9bb3022b8aad21c04873cae4a40148f
BLAKE2b-256 903543f7d3040dc771246d2717f247f0bdbce3d24436e8df693dc77138c142c8

See more details on using hashes here.

File details

Details for the file regex-2015.10.01-cp32-none-win_amd64.whl.

File metadata

File hashes

Hashes for regex-2015.10.01-cp32-none-win_amd64.whl
Algorithm Hash digest
SHA256 e589a25cb0c603913ddbe9fa83b5b8fd8da5b22b2784084c9fd08cbe8b6463ff
MD5 b11769cd73ab2d13cf379ca9b944f440
BLAKE2b-256 3933d9d35fdd7288e1846ebbbd39f72524e5dfd81f70ff82ea9692863a475eef

See more details on using hashes here.

File details

Details for the file regex-2015.10.01-cp32-none-win32.whl.

File metadata

File hashes

Hashes for regex-2015.10.01-cp32-none-win32.whl
Algorithm Hash digest
SHA256 cbefb26bb6a330fb278ed6d4c0d75bae6b85d70cead409538314214e3c7be9bc
MD5 1aeda9f4be9d1add36e79ef72b187c62
BLAKE2b-256 0ec886c8e26003083e2eda922b7c4016a27ba1a625486fbf4ea2f7d8292f5429

See more details on using hashes here.

File details

Details for the file regex-2015.10.01-cp31-none-win_amd64.whl.

File metadata

File hashes

Hashes for regex-2015.10.01-cp31-none-win_amd64.whl
Algorithm Hash digest
SHA256 254386341abfabee1e24ab1294950df8bfe02aca17eec3c92067bf5a2f27a071
MD5 13761f5ae516fa25fbc4ce6042d521ae
BLAKE2b-256 e1211ed72be9dc8979050eee79f1239da015b4541c5a22b1b31c0fd0c1938cc1

See more details on using hashes here.

File details

Details for the file regex-2015.10.01-cp31-none-win32.whl.

File metadata

File hashes

Hashes for regex-2015.10.01-cp31-none-win32.whl
Algorithm Hash digest
SHA256 915cd2b812b78c177cbd35deb4b38c8c9ff0c2ac9c359f7686e9eaa59d2c234d
MD5 473606bfcfeb7682fb1bd5a1101ef993
BLAKE2b-256 d7b666511c287b216846208af32c230acb899cce9528267485dbb54d3f9daac2

See more details on using hashes here.

File details

Details for the file regex-2015.10.01-cp27-none-win_amd64.whl.

File metadata

File hashes

Hashes for regex-2015.10.01-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 31a7b5b53a1253e28ebdf30cf2b65918c7fc49c8039f7915d4c069d3012705bd
MD5 48138ea6550a83d48782e62ccd5ff40f
BLAKE2b-256 50efd7641008d0b611cede9ed8c69a136d0ef82fdd323c6849e1133196701875

See more details on using hashes here.

File details

Details for the file regex-2015.10.01-cp27-none-win32.whl.

File metadata

File hashes

Hashes for regex-2015.10.01-cp27-none-win32.whl
Algorithm Hash digest
SHA256 a644daf251577f77e84de1ffa8cee2d5bdc026540d59822e74bb17609b282644
MD5 e72f5358f00dddc0801c26489bc22f73
BLAKE2b-256 93c94de2f47b61afd61af48ff20d24bdc9fd14f3e2f4770ddafceb2bbd6a71a2

See more details on using hashes here.

File details

Details for the file regex-2015.10.01-cp26-none-win_amd64.whl.

File metadata

File hashes

Hashes for regex-2015.10.01-cp26-none-win_amd64.whl
Algorithm Hash digest
SHA256 1e47869841f00faab864eccdafb0c2f21023bed3000823edcbcd56fd2fc1e7ed
MD5 417f209fa599f3e3f6f7737a6ce4f48a
BLAKE2b-256 adcaa940ce786d11320c347f2c4d1efa3446bd88741118fa6d923bfd6a21ee4e

See more details on using hashes here.

File details

Details for the file regex-2015.10.01-cp26-none-win32.whl.

File metadata

File hashes

Hashes for regex-2015.10.01-cp26-none-win32.whl
Algorithm Hash digest
SHA256 31edc628c6fb15f554c2a25e6006cef8b322c24dcca95090ad64e6cf8710b427
MD5 74fa96e326d41e76fc46df167d78392e
BLAKE2b-256 b6fd57de8eadbf1dacf64f628a989c620adb3ab2c8211b80ada3cf3b939b7e66

See more details on using hashes here.

File details

Details for the file regex-2015.10.01-cp25-none-win_amd64.whl.

File metadata

File hashes

Hashes for regex-2015.10.01-cp25-none-win_amd64.whl
Algorithm Hash digest
SHA256 b468ac34f861df4156c4f8764026fc3a1bf654969e189b461c5a59c804e26b05
MD5 47232153e1f1357210d7c30eb63d6089
BLAKE2b-256 7bbea4a1fae4cb4a4b5194536bed46618eca5fa43092c0ea89780741c0d0bd3c

See more details on using hashes here.

File details

Details for the file regex-2015.10.01-cp25-none-win32.whl.

File metadata

File hashes

Hashes for regex-2015.10.01-cp25-none-win32.whl
Algorithm Hash digest
SHA256 ae181994111afe68eb6cfb50cbde9f57ed1f84ad644393cd280a5c6dbf655625
MD5 cf60615f3306d290cbbe49831b505bba
BLAKE2b-256 c86ca473f84dfbde0cc29c2ba744ad8a37ff8e1802aaf6a513fab5467e852241

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page