Skip to main content

Interactive visualization in Python

Project description

VisPy: interactive scientific visualization in Python

Main website: http://vispy.org

Build Status Appveyor Status Coverage Status Zenodo Link


VisPy is a high-performance interactive 2D/3D data visualization library. VisPy leverages the computational power of modern Graphics Processing Units (GPUs) through the OpenGL library to display very large datasets. Applications of VisPy include:

  • High-quality interactive scientific plots with millions of points.

  • Direct visualization of real-time data.

  • Fast interactive visualization of 3D models (meshes, volume rendering).

  • OpenGL visualization demos.

  • Scientific GUIs with fast, scalable visualization widgets (Qt or IPython notebook with WebGL).

Announcements

Using VisPy

VisPy is a young library under heavy development at this time. It targets two categories of users:

  1. Users knowing OpenGL, or willing to learn OpenGL, who want to create beautiful and fast interactive 2D/3D visualizations in Python as easily as possible.

  2. Scientists without any knowledge of OpenGL, who are seeking a high-level, high-performance plotting toolkit.

If you’re in the first category, you can already start using VisPy. VisPy offers a Pythonic, NumPy-aware, user-friendly interface for OpenGL ES 2.0 called gloo. You can focus on writing your GLSL code instead of dealing with the complicated OpenGL API - VisPy takes care of that automatically for you.

If you’re in the second category, we’re starting to build experimental high-level plotting interfaces. Notably, VisPy now ships a very basic and experimental OpenGL backend for matplotlib.

Installation

VisPy runs on Python 2.7+ and Python 3.3+ and depends on NumPy. You also need a backend (PyQt4/PySide, PyQt5/PySide2, glfw, pyglet, SDL, or wx).

PyQt5/PySide2 should be considered more experimental than PyQt4/PySide.

VisPy can be installed either via pip:

` pip install vispy `

or within the Anaconda Python distribution. Anaconda provides a convenient package management system. Installing VisPy can then easily be achieved by adding conda-forge to the channels with:

` conda config --add channels conda-forge `

Once the conda-forge channel has been enabled, vispy can be installed with:

` conda install vispy `

Development Installation

As VisPy is under heavy development at this time, we highly recommend developers to use the development version on Github (master branch). You need to clone the repository and install VisPy with python setup.py install.

As a one-liner, assuming git is installed:

git clone --recurse-submodules https://github.com/vispy/vispy.git && cd vispy && python setup.py install --user

This will automatically install the latest version of vispy.

If you already have vispy cloned, you may need to update the git submodules to make sure you have the newest code:

git pull
git submodule update --init --recursive

Structure of VisPy

Currently, the main subpackages are:

  • app: integrates an event system and offers a unified interface on top of many window backends (Qt4, wx, glfw, IPython notebook with/without WebGL, and others). Relatively stable API.

  • gloo: a Pythonic, object-oriented interface to OpenGL. Relatively stable API.

  • scene: this is the system underlying our upcoming high level visualization interfaces. Under heavy development and still experimental, it contains several modules.

    • Visuals are graphical abstractions representing 2D shapes, 3D meshes, text, etc.

    • Transforms implement 2D/3D transformations implemented on both CPU and GPU.

    • Shaders implements a shader composition system for plumbing together snippets of GLSL code.

    • The scene graph tracks all objects within a transformation graph.

  • plot: high-level plotting interfaces.

The API of all public interfaces are subject to change in the future, although app and gloo are relatively stable at this point.

Genesis

VisPy began when four developers with their own visualization libraries decided to team up: Luke Campagnola with PyQtGraph, Almar Klein with Visvis, Cyrille Rossant with Galry, Nicolas Rougier with Glumpy.

Now VisPy looks to build on the expertise of these developers and the broader open-source community to build a high-performance OpenGL library.


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vispy-0.6.1.tar.gz (13.3 MB view details)

Uploaded Source

Built Distributions

vispy-0.6.1-cp37-cp37m-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.7mWindows x86-64

vispy-0.6.1-cp37-cp37m-win32.whl (2.2 MB view details)

Uploaded CPython 3.7mWindows x86

vispy-0.6.1-cp37-cp37m-manylinux1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7m

vispy-0.6.1-cp37-cp37m-manylinux1_i686.whl (2.2 MB view details)

Uploaded CPython 3.7m

vispy-0.6.1-cp37-cp37m-macosx_10_6_intel.whl (2.2 MB view details)

Uploaded CPython 3.7mmacOS 10.6+ Intel (x86-64, i386)

vispy-0.6.1-cp36-cp36m-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.6mWindows x86-64

vispy-0.6.1-cp36-cp36m-win32.whl (2.2 MB view details)

Uploaded CPython 3.6mWindows x86

vispy-0.6.1-cp36-cp36m-manylinux1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.6m

vispy-0.6.1-cp36-cp36m-manylinux1_i686.whl (2.2 MB view details)

Uploaded CPython 3.6m

vispy-0.6.1-cp36-cp36m-macosx_10_6_intel.whl (2.2 MB view details)

Uploaded CPython 3.6mmacOS 10.6+ Intel (x86-64, i386)

vispy-0.6.1-cp35-cp35m-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.5mWindows x86-64

vispy-0.6.1-cp35-cp35m-win32.whl (2.2 MB view details)

Uploaded CPython 3.5mWindows x86

vispy-0.6.1-cp35-cp35m-manylinux1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.5m

vispy-0.6.1-cp35-cp35m-manylinux1_i686.whl (2.2 MB view details)

Uploaded CPython 3.5m

vispy-0.6.1-cp35-cp35m-macosx_10_6_intel.whl (2.2 MB view details)

Uploaded CPython 3.5mmacOS 10.6+ Intel (x86-64, i386)

File details

Details for the file vispy-0.6.1.tar.gz.

File metadata

  • Download URL: vispy-0.6.1.tar.gz
  • Upload date:
  • Size: 13.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.4

File hashes

Hashes for vispy-0.6.1.tar.gz
Algorithm Hash digest
SHA256 8f4cf863a1c6142338d06cf3f824e75373dd45a4ce9a9a133e1c36b662f49aa1
MD5 1b8172fb3b5fc5d2a0fcc3102e184f53
BLAKE2b-256 fedd790121fd4331105e9227753bb3dcca29463c4f63f99860402c3efa00ffb7

See more details on using hashes here.

File details

Details for the file vispy-0.6.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: vispy-0.6.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.4

File hashes

Hashes for vispy-0.6.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a9f898c39ab7d663c90c4a17ae58c0bb10a62a9d7c4582682a88afd57290dcb0
MD5 7ea3f119b1e32242d909901e2d318a7e
BLAKE2b-256 ca3b8bbdac123b719bed87d1af8c478b82aaaafc3dcfc8917f8b13f66441cffe

See more details on using hashes here.

File details

Details for the file vispy-0.6.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: vispy-0.6.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.4

File hashes

Hashes for vispy-0.6.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 63bf69ad1346775029d309e9b067e271f34985b2cf225a4a49c1ca9cdc1dbdbc
MD5 62e10f862177ecebfe739e04c8771630
BLAKE2b-256 05cd633d3b348275888d39318e520cfe207d40cff3a59c9c6cde2d4571180b27

See more details on using hashes here.

File details

Details for the file vispy-0.6.1-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: vispy-0.6.1-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.4

File hashes

Hashes for vispy-0.6.1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 381fba62ac125523b499490398afead9e9f496728a4a0a990ad51c152380c287
MD5 327b07cf6ba2102a8005f3e4d140329a
BLAKE2b-256 6c3a384c578b08131d79d6d506f57a88f4c3e86bfb8f9ea53ae3332439ef1bb4

See more details on using hashes here.

File details

Details for the file vispy-0.6.1-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: vispy-0.6.1-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.4

File hashes

Hashes for vispy-0.6.1-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 3417c1582625455a1e5598970cbbd9bd7ba19fb6d03502ca2674a8db19f7433e
MD5 bb7cb9c7739ed5a6d9f804e736699d4c
BLAKE2b-256 2639157eed5716d622adae29ac652f4b2243e9b0a8b83447c2bce57a905b30dc

See more details on using hashes here.

File details

Details for the file vispy-0.6.1-cp37-cp37m-macosx_10_6_intel.whl.

File metadata

  • Download URL: vispy-0.6.1-cp37-cp37m-macosx_10_6_intel.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.7m, macOS 10.6+ Intel (x86-64, i386)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.4

File hashes

Hashes for vispy-0.6.1-cp37-cp37m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 c1e532fe2f3ea598c642ac2e2575c7a0dc2ffae20cce7751bb10e3086b4daa9a
MD5 de46cc72e000a2e713bd18b0840aa060
BLAKE2b-256 4d268fc28af8f352ab1a676b1a3619a4111bbe3e7b071ebec63dc3105cb532fa

See more details on using hashes here.

File details

Details for the file vispy-0.6.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: vispy-0.6.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.4

File hashes

Hashes for vispy-0.6.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 fffa505943e903f2a925669130662d4b8bc72fb380a61ed10dd9cf7906eb959b
MD5 b8bdee23c6ab4a68645b76ed9cf5d745
BLAKE2b-256 2ec9ab3596782c5920b839ec69d69b3671385bc07ff580a7e8e5f6ba92ccd9fb

See more details on using hashes here.

File details

Details for the file vispy-0.6.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: vispy-0.6.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.4

File hashes

Hashes for vispy-0.6.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 473cc3116aafd9bf32ed5b8b5aea1446f6450ef799cf2ace9c118ad14e051f47
MD5 f7686b1084d51b25cbb5d7f93ef81faa
BLAKE2b-256 7470d4e51eff423b3a103dd2ad644dbb3d89430040e236731a6433625d7e53c8

See more details on using hashes here.

File details

Details for the file vispy-0.6.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: vispy-0.6.1-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.4

File hashes

Hashes for vispy-0.6.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 364a7f91d67a8cc000e56a91a4c2947e21c968d67e741930cf1b6e8a47afaeab
MD5 eebaa56b35fda9a1d5ab5e7b17555c50
BLAKE2b-256 1d560d8e0d6a8edcd8a4eb938ec56027b7c20fd9c51f72438718b401a37513ed

See more details on using hashes here.

File details

Details for the file vispy-0.6.1-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: vispy-0.6.1-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.4

File hashes

Hashes for vispy-0.6.1-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 ee5d2570a4278bdf988d185c35f65ff4da80db0984300ffdf0c34c035a1c4561
MD5 50337cae21f2d8d733c6bfabd6817931
BLAKE2b-256 03b1839e5ce90a59572876719340d51e31f63516bfdfb44cb3400010aaf4ec9c

See more details on using hashes here.

File details

Details for the file vispy-0.6.1-cp36-cp36m-macosx_10_6_intel.whl.

File metadata

  • Download URL: vispy-0.6.1-cp36-cp36m-macosx_10_6_intel.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.6m, macOS 10.6+ Intel (x86-64, i386)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.4

File hashes

Hashes for vispy-0.6.1-cp36-cp36m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 a17653483cc4c197621492ab416f9256d34d1fe940a4dc59f41be49360a91056
MD5 790e5817351b67aa5f831e6e9fb06e7e
BLAKE2b-256 3fce813d4ff1d7e2c71d5d43f9c554cac6c9b45110aac8000f057b3e9788cf3f

See more details on using hashes here.

File details

Details for the file vispy-0.6.1-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: vispy-0.6.1-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.4

File hashes

Hashes for vispy-0.6.1-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 9ccecc529492a660cc9c879f3debf04b8ef3c7ecb43c2b3d62586204f67a7fcd
MD5 85fe8cf45ea14d69fd476388f279cf98
BLAKE2b-256 c445a698d3dee7fe471145833129194f1bd168240f547daffb77131758f90159

See more details on using hashes here.

File details

Details for the file vispy-0.6.1-cp35-cp35m-win32.whl.

File metadata

  • Download URL: vispy-0.6.1-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.4

File hashes

Hashes for vispy-0.6.1-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 bf8064159b11e10f5d9710d84388e636843b068f72dcbde8a3eac49c1a6fc7e6
MD5 b2ea993da3f3c998b5bc6ac6aadaa98a
BLAKE2b-256 735a3b21f45d473d76f12b588786af6371db4de1637555e765d28998386711d5

See more details on using hashes here.

File details

Details for the file vispy-0.6.1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: vispy-0.6.1-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.4

File hashes

Hashes for vispy-0.6.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c231117dbef22007c5ef5ef4f98904ffd4f6e60d83b62e9ba4965a9ae38b0bde
MD5 f44fc732457c7619eeea78a2e7888bfb
BLAKE2b-256 08c7facb0ad7c352528533d0e9aafefd584bed66c168c9140d2a904650fbad02

See more details on using hashes here.

File details

Details for the file vispy-0.6.1-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: vispy-0.6.1-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.4

File hashes

Hashes for vispy-0.6.1-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 6079a1d4757d22b0ee8c4d5d2422a4c2534e64fe826982c4535f6142949d2f29
MD5 049f64ec081b851f404a0cc683cef27e
BLAKE2b-256 50f1b65dc913fb4eb3e0dabf7ad00acdd4e9470a18836bbf61916e44aa28ca93

See more details on using hashes here.

File details

Details for the file vispy-0.6.1-cp35-cp35m-macosx_10_6_intel.whl.

File metadata

  • Download URL: vispy-0.6.1-cp35-cp35m-macosx_10_6_intel.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.5m, macOS 10.6+ Intel (x86-64, i386)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.4

File hashes

Hashes for vispy-0.6.1-cp35-cp35m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 d5eca3764455d2a8ca8bca2e3712fef66e462702270ecfaa4139a9ed1a51d647
MD5 a2c556a432c306db67d9c8aed0c1fc17
BLAKE2b-256 0919e56afb1abc0ccf2d8b79a339b073eb4b71b9bc21f804e4f6267172dd857f

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page