Skip to main content

Interactive visualization in Python

Project description

VisPy: interactive scientific visualization in Python

Main website: http://vispy.org

Build Status Coverage Status Zenodo Link Contributor Covenant


VisPy is a high-performance interactive 2D/3D data visualization library. VisPy leverages the computational power of modern Graphics Processing Units (GPUs) through the OpenGL library to display very large datasets. Applications of VisPy include:

  • High-quality interactive scientific plots with millions of points.

  • Direct visualization of real-time data.

  • Fast interactive visualization of 3D models (meshes, volume rendering).

  • OpenGL visualization demos.

  • Scientific GUIs with fast, scalable visualization widgets (Qt or IPython notebook with WebGL).

Releases

See [CHANGELOG.md](./CHANGELOG.md).

Announcements

See the VisPy Website.

Using VisPy

VisPy is a young library under heavy development at this time. It targets two categories of users:

  1. Users knowing OpenGL, or willing to learn OpenGL, who want to create beautiful and fast interactive 2D/3D visualizations in Python as easily as possible.

  2. Scientists without any knowledge of OpenGL, who are seeking a high-level, high-performance plotting toolkit.

If you’re in the first category, you can already start using VisPy. VisPy offers a Pythonic, NumPy-aware, user-friendly interface for OpenGL ES 2.0 called gloo. You can focus on writing your GLSL code instead of dealing with the complicated OpenGL API - VisPy takes care of that automatically for you.

If you’re in the second category, we’re starting to build experimental high-level plotting interfaces. Notably, VisPy now ships a very basic and experimental OpenGL backend for matplotlib.

Installation

Please follow the detailed installation instructions on the VisPy website.

Structure of VisPy

Currently, the main subpackages are:

  • app: integrates an event system and offers a unified interface on top of many window backends (Qt4, wx, glfw, IPython notebook with/without WebGL, and others). Relatively stable API.

  • gloo: a Pythonic, object-oriented interface to OpenGL. Relatively stable API.

  • scene: this is the system underlying our upcoming high level visualization interfaces. Under heavy development and still experimental, it contains several modules.

    • Visuals are graphical abstractions representing 2D shapes, 3D meshes, text, etc.

    • Transforms implement 2D/3D transformations implemented on both CPU and GPU.

    • Shaders implements a shader composition system for plumbing together snippets of GLSL code.

    • The scene graph tracks all objects within a transformation graph.

  • plot: high-level plotting interfaces.

The API of all public interfaces are subject to change in the future, although app and gloo are relatively stable at this point.

Code of Conduct

The VisPy community requires its members to abide by the Code of Conduct. In this CoC you will find the expectations of members, the penalties for violating these expectations, and how violations can be reported to the members of the community in charge of enforcing this Code of Conduct.

Genesis

VisPy began when four developers with their own visualization libraries decided to team up: Luke Campagnola with PyQtGraph, Almar Klein with Visvis, Cyrille Rossant with Galry, Nicolas Rougier with Glumpy.

Now VisPy looks to build on the expertise of these developers and the broader open-source community to build a high-performance OpenGL library.


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vispy-0.7.3.tar.gz (13.4 MB view details)

Uploaded Source

Built Distributions

vispy-0.7.3-cp39-cp39-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.9Windows x86-64

vispy-0.7.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

vispy-0.7.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

vispy-0.7.3-cp39-cp39-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

vispy-0.7.3-cp38-cp38-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.8Windows x86-64

vispy-0.7.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

vispy-0.7.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

vispy-0.7.3-cp38-cp38-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

vispy-0.7.3-cp37-cp37m-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.7mWindows x86-64

vispy-0.7.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

vispy-0.7.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

vispy-0.7.3-cp37-cp37m-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

File details

Details for the file vispy-0.7.3.tar.gz.

File metadata

  • Download URL: vispy-0.7.3.tar.gz
  • Upload date:
  • Size: 13.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for vispy-0.7.3.tar.gz
Algorithm Hash digest
SHA256 1edd3434247577e0910f9c76331b82a54be7e5381c022120c7336e73167b155c
MD5 df63d14ab4641ba2e79da01727864233
BLAKE2b-256 e1737af0ff8ebe9e3c91f3d7b3f6ad4d93f4d678e51857ccee16dfd8a82c2147

See more details on using hashes here.

File details

Details for the file vispy-0.7.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: vispy-0.7.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for vispy-0.7.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 748ff7466db5a779a9324ba874aa3a496b299ecc1031e9cae01827b6557ff067
MD5 e5f15ace1b3b8d91c745fa19bb76a33f
BLAKE2b-256 f196b7888753acb3a9043be6b7ecb8a63639bc357e6adfd119c937460b0bcd15

See more details on using hashes here.

File details

Details for the file vispy-0.7.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.7.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5f0b99993cbac5965a39df01a91c97ba7760bcb932ed39c8484bd3bf6dfff91d
MD5 056c80ccf3829e7575e8444ab609fdba
BLAKE2b-256 e6997ac707a778c1f866856882f8228bce381b71bb64294a6233a6a06f62ef3b

See more details on using hashes here.

File details

Details for the file vispy-0.7.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for vispy-0.7.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 123305ad3c0d8936b73e610208cb342350c2242d7fd8d5ba1f11e941e70b21f1
MD5 7180b76dfd30b656941f779375ec615d
BLAKE2b-256 38e7bcfa70f8998e3bb01c77bd65c99d9e6e3cb2d631252ee156651647283705

See more details on using hashes here.

File details

Details for the file vispy-0.7.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: vispy-0.7.3-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for vispy-0.7.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6c19195a1833036aac1e04ab82672401fc8c6f19d0bcef7a800b85c3681a89d2
MD5 a6176392958fd6cb75d535390875063a
BLAKE2b-256 ab04eb23d407ab12a7fe9c682206b3edf6e6011210cf587d31844e74b576d33c

See more details on using hashes here.

File details

Details for the file vispy-0.7.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: vispy-0.7.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for vispy-0.7.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f991c7f2a9094999ec2af95e8b7c3446bd7db292301d592327878d64a4439b71
MD5 5e73b413522867ffb65c8f8960b6f004
BLAKE2b-256 4b05f3016a4576a2dabac737f5f7eed63412c3ac7481c624edad1f30da7fe6c4

See more details on using hashes here.

File details

Details for the file vispy-0.7.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.7.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3612006ca88f05f6e5f6d92f81909e819c7d42b958708d74699baa2a3c7a3c68
MD5 0ab1a3ad4483899c06e3d7d833cf034a
BLAKE2b-256 301d258284479c5b3e1ed6b6cc954794676fd1d7e48c2b546847cd83cf930799

See more details on using hashes here.

File details

Details for the file vispy-0.7.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for vispy-0.7.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9775c73af9b89d3c48c03cd3b564c06280cabbe9531bade3c1c8769da5da0086
MD5 44da030fc14ce7625f28e169a0f2dc21
BLAKE2b-256 2b277c91a216dc1e425298ede5a9379b148a1062ee62aa7873cc439cf5885e55

See more details on using hashes here.

File details

Details for the file vispy-0.7.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: vispy-0.7.3-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for vispy-0.7.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 27ad0e7da699f35cbe1f75a77eef5d6a40441aca3e610f18d6af49a966178ddb
MD5 b896538c4cf518150d576e2754307a27
BLAKE2b-256 40b6faf0257bb6753bea9c12bc93fc9994d4c46ccaad8ad9ee7385afe2e54478

See more details on using hashes here.

File details

Details for the file vispy-0.7.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: vispy-0.7.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for vispy-0.7.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 e0cebd5b27d556007f42526a24ca8b8490ee803adb6cc73e65645da16d1c86f6
MD5 e5ec3df169da525b300a8bf3288a9c6e
BLAKE2b-256 76a34bfa0c5485020885d9e20aa6d69fb06b74db333018269c47343e05c489f3

See more details on using hashes here.

File details

Details for the file vispy-0.7.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.7.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 11cc256b9dbb8d0d1ea36262ed12de68908f4f0c82940c7778fc07f2752d0354
MD5 f9dbfd94f6606a960d9978ae99807614
BLAKE2b-256 dbaf9aa2e4589eaa2eaedcd1e06d91d9ef896aae3d1cc54670a27c2d74137421

See more details on using hashes here.

File details

Details for the file vispy-0.7.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for vispy-0.7.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 71faf54e14c7f63fc20ee348d99246cac64d2352a8da58e920ac6bade9913f2f
MD5 027ece630801e275e3c073365b0b7179
BLAKE2b-256 c84745d5367ff8bb8009074590612222534b7ada050df7a6b967e109bd9d633a

See more details on using hashes here.

File details

Details for the file vispy-0.7.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: vispy-0.7.3-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for vispy-0.7.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 029264a67c1c1ffef85de3bf738a2453136bd858db92aeffb4d30c885236dd9a
MD5 279ab98ca18d0b4c4748b65b221d3799
BLAKE2b-256 2e67a62cb41919d225b4125b18210273eeda79ea29987f1cc1ab6a6515652f25

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page