Skip to main content

A set of easy-to-use utils that will come in handy in any Computer Vision project

Project description

👋 hello

We write your reusable computer vision tools. Whether you need to load your dataset from your hard drive, draw detections on an image or video, or count how many detections are in a zone. You can count on us! 🤝

💻 install

Pip install the supervision package in a 3.11>=Python>=3.8 environment.

pip install supervision[desktop]

Read more about desktop, headless, and local installation in our guide.

🔥 quickstart

detections processing

>>> import supervision as sv
>>> from ultralytics import YOLO

>>> model = YOLO('yolov8s.pt')
>>> result = model(IMAGE)[0]
>>> detections = sv.Detections.from_ultralytics(result)

>>> len(detections)
5
👉 more detections utils
  • Easily switch inference pipeline between supported object detection/instance segmentation models

    >>> import supervision as sv
    >>> from segment_anything import sam_model_registry, SamAutomaticMaskGenerator
    
    >>> sam = sam_model_registry[MODEL_TYPE](checkpoint=CHECKPOINT_PATH).to(device=DEVICE)
    >>> mask_generator = SamAutomaticMaskGenerator(sam)
    >>> sam_result = mask_generator.generate(IMAGE)
    >>> detections = sv.Detections.from_sam(sam_result=sam_result)
    
  • Advanced filtering

    >>> detections = detections[detections.class_id == 0]
    >>> detections = detections[detections.confidence > 0.5]
    >>> detections = detections[detections.area > 1000]
    
  • Image annotation

    >>> import supervision as sv
    
    >>> box_annotator = sv.BoxAnnotator()
    >>> annotated_frame = box_annotator.annotate(
    ...     scene=IMAGE,
    ...     detections=detections
    ... )
    

datasets processing

>>> import supervision as sv

>>> dataset = sv.DetectionDataset.from_yolo(
...     images_directory_path='...',
...     annotations_directory_path='...',
...     data_yaml_path='...'
... )

>>> dataset.classes
['dog', 'person']

>>> len(dataset)
1000
👉 more dataset utils
  • Load object detection/instance segmentation datasets in one of the supported formats

    >>> dataset = sv.DetectionDataset.from_yolo(
    ...     images_directory_path='...',
    ...     annotations_directory_path='...',
    ...     data_yaml_path='...'
    ... )
    
    >>> dataset = sv.DetectionDataset.from_pascal_voc(
    ...     images_directory_path='...',
    ...     annotations_directory_path='...'
    ... )
    
    >>> dataset = sv.DetectionDataset.from_coco(
    ...     images_directory_path='...',
    ...     annotations_path='...'
    ... )
    
  • Loop over dataset entries

    >>> for name, image, labels in dataset:
    ...     print(labels.xyxy)
    
    array([[404.      , 719.      , 538.      , 884.5     ],
           [155.      , 497.      , 404.      , 833.5     ],
           [ 20.154999, 347.825   , 416.125   , 915.895   ]], dtype=float32)
    
  • Split dataset for training, testing, and validation

    >>> train_dataset, test_dataset = dataset.split(split_ratio=0.7)
    >>> test_dataset, valid_dataset = test_dataset.split(split_ratio=0.5)
    
    >>> len(train_dataset), len(test_dataset), len(valid_dataset)
    (700, 150, 150)
    
  • Merge multiple datasets

    >>> ds_1 = sv.DetectionDataset(...)
    >>> len(ds_1)
    100
    >>> ds_1.classes
    ['dog', 'person']
    
    >>> ds_2 = sv.DetectionDataset(...)
    >>> len(ds_2)
    200
    >>> ds_2.classes
    ['cat']
    
    >>> ds_merged = sv.DetectionDataset.merge([ds_1, ds_2])
    >>> len(ds_merged)
    300
    >>> ds_merged.classes
    ['cat', 'dog', 'person']
    
  • Save object detection/instance segmentation datasets in one of the supported formats

    >>> dataset.as_yolo(
    ...     images_directory_path='...',
    ...     annotations_directory_path='...',
    ...     data_yaml_path='...'
    ... )
    
    >>> dataset.as_pascal_voc(
    ...     images_directory_path='...',
    ...     annotations_directory_path='...'
    ... )
    
    >>> dataset.as_coco(
    ...     images_directory_path='...',
    ...     annotations_path='...'
    ... )
    
  • Convert labels between supported formats

    >>> sv.DetectionDataset.from_yolo(
    ...     images_directory_path='...',
    ...     annotations_directory_path='...',
    ...     data_yaml_path='...'
    ... ).as_pascal_voc(
    ...     images_directory_path='...',
    ...     annotations_directory_path='...'
    ... )
    
  • Load classification datasets in one of the supported formats

    >>> cs = sv.ClassificationDataset.from_folder_structure(
    ...     root_directory_path='...'
    ... )
    
  • Save classification datasets in one of the supported formats

    >>> cs.as_folder_structure(
    ...     root_directory_path='...'
    ... )
    

model evaluation

>>> import supervision as sv

>>> dataset = sv.DetectionDataset.from_yolo(...)

>>> def callback(image: np.ndarray) -> sv.Detections:
...     ...

>>> confusion_matrix = sv.ConfusionMatrix.benchmark(
...     dataset = dataset,
...     callback = callback
... )

>>> confusion_matrix.matrix
array([
    [0., 0., 0., 0.],
    [0., 1., 0., 1.],
    [0., 1., 1., 0.],
    [1., 1., 0., 0.]
])
👉 more metrics
  • Mean average precision (mAP) for object detection tasks.

    >>> import supervision as sv
    
    >>> dataset = sv.DetectionDataset.from_yolo(...)
    
    >>> def callback(image: np.ndarray) -> sv.Detections:
    ...     ...
    
    >>> mean_average_precision = sv.MeanAveragePrecision.benchmark(
    ...     dataset = dataset,
    ...     callback = callback
    ... )
    
    >>> mean_average_precision.map50_95
    0.433
    

🎬 tutorials

Traffic Analysis with YOLOv8 and ByteTrack - Vehicle Detection and Tracking Traffic Analysis with YOLOv8 and ByteTrack - Vehicle Detection and Tracking

Created: 6 Sep 2023 | Updated: 6 Sep 2023

In this video, we explore real-time traffic analysis using YOLOv8 and ByteTrack to detect and track vehicles on aerial images. Harnessing the power of Python and Supervision, we delve deep into assigning cars to specific entry zones and understanding their direction of movement. By visualizing their paths, we gain insights into traffic flow across bustling roundabouts...


SAM - Segment Anything Model by Meta AI: Complete Guide SAM - Segment Anything Model by Meta AI: Complete Guide

Created: 11 Apr 2023 | Updated: 11 Apr 2023

Discover the incredible potential of Meta AI's Segment Anything Model (SAM)! We dive into SAM, an efficient and promptable model for image segmentation, which has revolutionized computer vision tasks. With over 1 billion masks on 11M licensed and privacy-respecting images, SAM's zero-shot performance is often competitive with or even superior to prior fully supervised results...

💜 built with supervision

Did you build something cool using supervision? Let us know!

https://user-images.githubusercontent.com/26109316/207858600-ee862b22-0353-440b-ad85-caa0c4777904.mp4

https://github.com/roboflow/supervision/assets/26109316/c9436828-9fbf-4c25-ae8c-60e9c81b3900

📚 documentation

Visit our documentation page to learn how supervision can help you build computer vision applications faster and more reliably.

🏆 contribution

We love your input! Please see our contributing guide to get started. Thank you 🙏 to all our contributors!


Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

supervision-0.17.0rc1.tar.gz (63.8 kB view details)

Uploaded Source

Built Distribution

supervision-0.17.0rc1-py3-none-any.whl (74.8 kB view details)

Uploaded Python 3

File details

Details for the file supervision-0.17.0rc1.tar.gz.

File metadata

  • Download URL: supervision-0.17.0rc1.tar.gz
  • Upload date:
  • Size: 63.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for supervision-0.17.0rc1.tar.gz
Algorithm Hash digest
SHA256 08b2b09bcd918e1d5149099c8f1d8bbf4200e79fdd1a64cf0026c2f0a1b50b01
MD5 f3ce21f7024851c59074b0d5049ae982
BLAKE2b-256 ae07d24e0d214df7b76338961e66c97b621c4baeeaad54375550821db499f36f

See more details on using hashes here.

File details

Details for the file supervision-0.17.0rc1-py3-none-any.whl.

File metadata

File hashes

Hashes for supervision-0.17.0rc1-py3-none-any.whl
Algorithm Hash digest
SHA256 47980b9a052b1c54619a1707faad7a018275095479c10c121ec2d9ada1382bc7
MD5 9e328021c50ac7498bf6fc7d73f47cbc
BLAKE2b-256 0bd09e085cf7a826fd1cb58651c2a3cc13f526e8612532c3aec647bae6636fe5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page