Skip to main content

An open source library for statistical plotting

Project description

Lets-Plot official JetBrains project

Couldn't load MIT license svg

Lets-Plot is a multiplatform plotting library based on the Grammar of Graphics.

The library' design is heavily influenced by Leland Wilkinson work The Grammar of Graphics describing the deep features that underlie all statistical graphics.

This grammar [...] is made up of a set of independent components that can be composed in many different ways. This makes [it] very powerful because you are not limited to a set of pre-specified graphics, but you can create new graphics that are precisely tailored for your problem.

We provide ggplot2-like plotting API for Python and Kotlin users.

Lets-Plot for Python

A bridge between R (ggplot2) and Python data visualization.

To learn more: lets-plot.org.

Lets-Plot for Kotlin

Lets-Plot for Kotlin adds plotting capabilities to scientific notebooks built on the Jupyter Kotlin Kernel.

You can use this API to embed charts into Kotlin/JVM and Kotlin/JS applications as well.

Lets-Plot for Kotlin at GitHub: https://github.com/JetBrains/lets-plot-kotlin.

"Lets-Plot in SciView" plugin

JetBrains Plugins JetBrains plugins

Scientific mode in PyCharm and in IntelliJ IDEA provides support for interactive scientific computing and data visualization.

Lets-Plot in SciView plugin adds support for interactive plotting to IntelliJ-based IDEs with the Scientific mode enabled.

Note: The Scientific mode is NOT available in communinty editions of JetBrains IDEs.

Also read:

What is new in 4.0.0

The major version was bumped to 4 due to a major package refactoring that the project has undergone.
This refactoring doesn't affect the Python API, however, as a result of package names changed,
Lets-Plot v4.0.0 is partially incompatible with Lets-Plot Kotlin API versions 4.4.1 and earlier.

A Number of Geometry Defaults Changed

  • The default qualitative color palette is now Color Brewer "Set1" (was "Set2").
  • Slightly bigger default size of points and width of lines.
  • Flavor-aware default colors for points, lines etc.

f-23c/images/geom_defaults.png
f-23c/images/flavor_geom_colors.png

See: example notebook.

  • Size of points is slightly adjusted to match the width of a line of the same "size".

f-23c/images/point_vs_line.png

Support for Variadic Line Width and/or Color in geom_line() and geom_path()


f-23c/images/variadic_width.png

See: example notebook.

Parameter "size_unit" in geom_pie()

A way to specify size of the pie in units relative to the plot size.

See: example notebook.

Stroke and Spacers in geom_pie()


f-23c/images/pie_stroke.png

See: example notebook.

New theme_void(), Geometries and Statistics

Change Log

See CHANGELOG.md for other changes and fixes.

Code of Conduct

This project and the corresponding community are governed by the JetBrains Open Source and Community Code of Conduct. Please make sure you read it.

License

Code and documentation released under the MIT license. Copyright © 2019-2023, JetBrains s.r.o.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

lets_plot-4.0.1-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11Windows x86-64

lets_plot-4.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

lets_plot-4.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

lets_plot-4.0.1-cp311-cp311-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

lets_plot-4.0.1-cp311-cp311-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

lets_plot-4.0.1-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10Windows x86-64

lets_plot-4.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

lets_plot-4.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

lets_plot-4.0.1-cp310-cp310-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

lets_plot-4.0.1-cp310-cp310-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

lets_plot-4.0.1-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9Windows x86-64

lets_plot-4.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

lets_plot-4.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

lets_plot-4.0.1-cp39-cp39-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

lets_plot-4.0.1-cp39-cp39-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

lets_plot-4.0.1-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8Windows x86-64

lets_plot-4.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

lets_plot-4.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

lets_plot-4.0.1-cp38-cp38-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

lets_plot-4.0.1-cp38-cp38-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

lets_plot-4.0.1-cp37-cp37m-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.7mWindows x86-64

lets_plot-4.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

lets_plot-4.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ ARM64

lets_plot-4.0.1-cp37-cp37m-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

File details

Details for the file lets_plot-4.0.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.0.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for lets_plot-4.0.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 a175bf9f33c4e9cc2330dcd01aa9023180c0b197880a400420d9ce7c1876267c
MD5 75de2cdd8c817df3718ab150b12c3d42
BLAKE2b-256 32dc1c3dbe4e9208602d6c44d10ddd43ce26c6a3167880757b33364cfa34c718

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a4a6822e8bb77185d2fff766d00c6e739366f5f3e774111a34990a84a5cab6de
MD5 7396e3ce6270e203cf43ac3cbeffbdde
BLAKE2b-256 081d02bb0197574b22db57950a33f1aaf14eba594d61d392df03768614a00c1d

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 513489cd49132b1104c23d8a4220705e37bb64d03f6302b475b37082e52eebf9
MD5 95cbb4de223780c311d34d1058442f9c
BLAKE2b-256 5b1fc975143363b2a064539dea0aaaeff091fe35c172e682779e48817b7b4944

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.0.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 70b8bc8b09e48768cc864d933e2b82c158059d2eb02abe1db37d1c473f16bb54
MD5 0e46c7b79b32ee0d64f456e8bb7e8c0a
BLAKE2b-256 beefc466ea1ede3d9b473460014a8157b49fb795f00ebf95c8432275730a740a

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.0.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 024b03ff9b7ff9c791cbd2f6dd9bf84e2d886026268d11034264021ef1c75060
MD5 157b4cb7b6b2472635f0a53db0e09036
BLAKE2b-256 a034956e4f762cfa21eee684c4da11e7f92abfda38d4f5b5795397efa2a82240

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.0.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for lets_plot-4.0.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 cd5b32960137e1ccc4921f48bee4bbd1a4732cea2af86bd8ce537af0b0f96efd
MD5 7787392ac5eac53b137680dbd580b1f1
BLAKE2b-256 7012435ab78a0bba4e01e4003b774c15909b49ecca12b016bdd4337570aab84b

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e51e738b0ef71427c176402d770931e75b7f44309a2923cd6d87b1812d1fff7f
MD5 31def5c100e6eaa110b2a09a3bc10732
BLAKE2b-256 7e2626fbb2b992fc1b24d1ee2259ea1383d78358bf9467d44b184241c6c4e210

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f6b205186f1a669bcc00b2060e506c34906deb5e3dd0ee2fac9fb38bacd6234f
MD5 34e2cc6137c7a3e758bb08e2a80b7d22
BLAKE2b-256 2802df5497b813d540b59be85dc1f11150b76e844df8bef56ec1ab964b041c34

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.0.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 936784d82b67b363e3d716e4a67daf3142ee0e8f5f39bc623abca0aa46ce345e
MD5 0c9a8dc0fe6d0ec5022463debd151368
BLAKE2b-256 7a38bf9c0fcc1d862f752c0bb7b8b1aa1824ef75cbb4edff9e063b64990c094e

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.0.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0beba64f5b8326a817dc2c6806732053fc9abab70c71003616a874a38692f186
MD5 2456afa508160d3fde68c7f4ce52c66e
BLAKE2b-256 7856f58a40fcfd0750272057563eff9ba9f45e93dfc5e3a7d8e5e4e528ad5ce5

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.0.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for lets_plot-4.0.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 15d153a4f3f630f64c1745cc650d02fa96324826f0038c37645af50ba0f9f434
MD5 2fa7aeabf8fe72cfb902643a7147eb66
BLAKE2b-256 617eea25c31073658749e0980ac2e6923063be3a192f24df196c354802d81249

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d31f43831d1c08950b50d2e9366ac2c6a9953a07645b90226f28d8dc8b368b93
MD5 454d5ecc7f27f6751b0a04ffef44b3f1
BLAKE2b-256 4fe4a9726312de4633c4d21f76f241e6c27b8bcdb8ab488f63a213ef1978573f

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bbfafd81f1ae77b137b4618c9f8d90ecd4c1d516b2a085aef157ddf0e3223260
MD5 66b33dbf0479b512aa851796c7ec351a
BLAKE2b-256 72b825393295cbf6969dde7b7d479047d08670a0c5d33c8a9d80cb5747b47c55

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.0.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a5bde4bd8daf820f5bc2a5def947e4ee4a64308a2a44c396c10374ba241fc0fd
MD5 99365c74542fb407744ca2f28f4d6ae7
BLAKE2b-256 7788ef7d184f0cd786f6a35b3bc0fb5d89499248fc3357bbf6375024ce0babb2

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.0.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4d625d02cedc1ff7b07d4d49ffd3f18f1bb0f09add7a93809ee9d162fb64a56f
MD5 295d87fadd3e362274915b3ac1dd0345
BLAKE2b-256 52b3fa7399797ccc96bc82b075a9abe854b5d8cc5b72f7e74488bd13919c5337

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.0.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for lets_plot-4.0.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 423881cc8cdbe6f6c01abefd7e8ff2f8eaca9f3ca8989eb66216e2dbeb27ce15
MD5 d76f61422d0870d247d9c988555f84fc
BLAKE2b-256 5bcc42b82c38a89128fa7d870a31bab3878fcb9f7cc99588df6acb8e8f86b63b

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 01bfdd517a1e1001a2501adf0ed75339bfaf1db352f7f268a7af5dae109aa1e9
MD5 b575eb49c5fe0484b4f7baf5b8b34742
BLAKE2b-256 4a2ba8bd438db2809febff6c0c48bdb033a20d39687cfc6dd626cebc7ff764e5

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b7667bf8efeac87c5b1555da1d0ce0b1cffc6968432c907f6a55d537aa6e381c
MD5 c25b98fa92ffcd781212aaeae5675350
BLAKE2b-256 a8a2339d782a8c1f9066bc73e7dadda5770c00c59cfb7e4cbcf7c3d1594dd77e

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.0.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 55beac77ab15aee1f02541a0f3073f1ed87fa89175d292ea4e59c843628f3a58
MD5 c16a49381b8e9d136c3aebb747b35431
BLAKE2b-256 2040da3b0191d446543191fa0b15b237755dd59ffee100cb19646a0cfb65a3ac

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.0.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 49c0ea0b89c06cf8d9a3220a0836fb2a35b65a291decdaa1090563edecd9c6bd
MD5 8a4ab4ce31031965b45325c8a7c2a9c9
BLAKE2b-256 eda2b7052900d6cffb07d51998a2e4ccdd80a6ed62f1e58735c7452d2f8f305d

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.0.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for lets_plot-4.0.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 398bff6a7cafccfb252aa3950b82fa3f3e1f5649182d57932841807b42a7c2fb
MD5 00f1c196f0c0e68c3c93172dd4034802
BLAKE2b-256 d822525d5ec6bc784544a8e65bfb3e21074596e0510c8bcc81062e5f4be94b79

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d4737f8f8021ecc544cf67f0044a61f018c5ffb8d64f11aafdecef1a8833ab2f
MD5 f8e7c09c08d8754f4516d00694712ce9
BLAKE2b-256 b2d0e20eea43dde0438e691d58721054f5c0fb62fc0427784dcce2a913bdbdf6

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ebfab6ac915b365ffb794766b8cc7856c124cad00b518d1a763b76c2473b9a86
MD5 29d4590e9f8e657105b8470717309cfc
BLAKE2b-256 f4aea94e73e39bf2d30a6e13f07be6638d5516d29e4f1869b34f5befbdc60d01

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.0.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 116623680daba3f83ce2c6399b4cab0300a36384d8043e52abc037bfc1b36412
MD5 0c841452af6ded84960248e7327b404e
BLAKE2b-256 62f65e185dfba832794e9981f6b80fe40b06a89fb062d2e3442abdfcaae4d0e0

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page