Skip to main content

An open source library for statistical plotting

Project description

Lets-Plot

official JetBrains project License MIT Latest Release

Lets-Plot is a multiplatform plotting library built on the principles of the Grammar of Graphics.

The library' design is heavily influenced by Leland Wilkinson work The Grammar of Graphics describing the deep features that underlie all statistical graphics.

This grammar [...] is made up of a set of independent components that can be composed in many different ways. This makes [it] very powerful because you are not limited to a set of pre-specified graphics, but you can create new graphics that are precisely tailored for your problem.

Grammar of Graphics for Python Latest Release

A bridge between R (ggplot2) and Python data visualization.
To learn more see the documentation site at lets-plot.org.

Grammar of Graphics for Kotlin Latest Release

Notebooks

Create plots in Kotlin Notebook, Datalore, Jupyter with Kotlin Kernel
or any other notebook that supports Kotlin Kernel.
To learn more see the Lets-Plot Kotlin API project at GitHub.

Compose Multiplatform

Embed Lets-Plot charts in Compose Multiplatform applications.
To learn more see the Lets-Plot Skia Frontend project at GitHub.

JVM and Kotlin/JS

Embed Lets-Plot charts in JVM (Swing, JavaFX) and Kotlin/JS applications.
To learn more see the Lets-Plot Kotlin API project at GitHub.

"Lets-Plot in SciView" plugin

JetBrains Plugins JetBrains plugins

Scientific mode in PyCharm and in IntelliJ IDEA provides support for interactive scientific computing and data visualization.

Lets-Plot in SciView plugin adds support for interactive plotting to IntelliJ-based IDEs with the Scientific mode enabled.

Note: The Scientific mode is NOT available in communinty editions of JetBrains IDEs.

Also read:

What is new in 4.3.0

  • coord_polar()

    The polar coordinate system is most commonly used for pie charts, but
    it can also be used for constructing Spyder or Radar charts using the flat option.


    f-24a/images/polar_coord_pie.png f-24a/images/radar_chart.png

    See: example notebook.

  • In the theme():

    • panel_inset parameter - primarily used for plots with polar coordinates.

      See: example notebook.

    • panel_border_ontop parameter - enables the drawing of panel border on top of the plot geoms.

    • panel_grid_ontop, panel_grid_ontop_x, panel_grid_ontop_y parameters - enable the drawing of grid lines on top of the plot geoms.

  • geom_curve()


    f-24a/images/curve_annotation.png

    See: example notebook.

  • [UNIQUE] Visualizing Graph-like Data with geom_segment() and geom_curve()

    • Aesthetics size_start, size_end, stroke_start and stroke_end enable better alignment of
      segments/curves with nodes of the graph by considering the size of the nodes.

    • The spacer parameter allows for additional manual fine-tuning.


      f-24a/images/graph_simple.png f-24a/images/graph_on_map.png

    See:

  • The alpha_stroke Parameter in geom_label()

    Use the alpha_stroke parameter to apply alpha to entire label. By default, alpha is only applied to the label background.

    See: example notebook.

  • Showing Plots in External Browser

    The LetsPlot.setup_show_ext() directive allows plots to be displayed in an external browser window.

  • Updates in the Gallery

    f-24a/images/gal_bbc_cookbook.png f-24a/images/gal_penguins.png f-24a/images/gal_periodic_table.png f-24a/images/gal_wind_rose.png

Change Log

See CHANGELOG.md for other changes and fixes.

Code of Conduct

This project and the corresponding community are governed by the JetBrains Open Source and Community Code of Conduct. Please make sure you read it.

License

Code and documentation released under the MIT license. Copyright © 2019-2024, JetBrains s.r.o.

Project details


Release history Release notifications | RSS feed

This version

4.3.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

lets_plot-4.3.0-cp312-cp312-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.12Windows x86-64

lets_plot-4.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

lets_plot-4.3.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

lets_plot-4.3.0-cp312-cp312-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

lets_plot-4.3.0-cp312-cp312-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.12macOS 10.9+ x86-64

lets_plot-4.3.0-cp311-cp311-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.11Windows x86-64

lets_plot-4.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

lets_plot-4.3.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

lets_plot-4.3.0-cp311-cp311-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

lets_plot-4.3.0-cp311-cp311-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

lets_plot-4.3.0-cp310-cp310-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.10Windows x86-64

lets_plot-4.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

lets_plot-4.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

lets_plot-4.3.0-cp310-cp310-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

lets_plot-4.3.0-cp310-cp310-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

lets_plot-4.3.0-cp39-cp39-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.9Windows x86-64

lets_plot-4.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

lets_plot-4.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

lets_plot-4.3.0-cp39-cp39-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

lets_plot-4.3.0-cp39-cp39-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

lets_plot-4.3.0-cp38-cp38-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.8Windows x86-64

lets_plot-4.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

lets_plot-4.3.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

lets_plot-4.3.0-cp38-cp38-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

lets_plot-4.3.0-cp38-cp38-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

lets_plot-4.3.0-cp37-cp37m-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.7mWindows x86-64

lets_plot-4.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

lets_plot-4.3.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ ARM64

lets_plot-4.3.0-cp37-cp37m-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

File details

Details for the file lets_plot-4.3.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.3.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for lets_plot-4.3.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 cfb1d72614e5f65fd73027c04b6d62ac391fec784dcb3b2661d6761977d520c5
MD5 4e839e836b9b0283d0a6af65d928bf45
BLAKE2b-256 7ff574136bea8a58d05c592261b9f805d1ca02c7e6984967ebbac805c877d906

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 77fc70c65fd0cd3f54885ff6b7369050958de8985a54fc3d8394c318026e21bf
MD5 a9f702f5d7dff5aceb77f8c54437e44c
BLAKE2b-256 3088094f236c355e1e29567efd75301d71418af70208c5ffcad99f3c6d98036d

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d753384a8c3121f3a69561e3f833bc7430634a4e167b6426b628f3ed877217af
MD5 eb421b20a29f5bb63eb48b2fbb16469f
BLAKE2b-256 4b897fff3d9c356591bac483fc5224d0a1d4e994f9f7405547fb100377c8c388

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2356cf06d44b08077494d1bf89b03af9c4c4df0b063c27aaffa060051caff996
MD5 ab72b408bbf367081c16f3e388ab392f
BLAKE2b-256 f29278576c48441767c85f5043505a98e5df3adef521c54cd668ca2c5cebd4bd

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 db0a765c8626a93de0aea6f94a1e1270bfa9eb47e54bebfda30077cbf3ca6f3e
MD5 fe5b0b1a8f74221768a1523dc0cab57a
BLAKE2b-256 02db6d5a9d2ccb7c7ab64a0446f7d9524e0ba4c9789db579a76686e1ce0dbdbc

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.3.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for lets_plot-4.3.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 f1b88f8196facec40db2fb63fd46018e92fa8bfc5b0c6447dfc8a7f741387aec
MD5 c9448eb7cb7e1c0c8913237e8e6675c0
BLAKE2b-256 fbb47e95c7061bfc74b353c8bed101acc3fa438fc48596f0296b9053937bf7a3

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3e17514b7bd60aac1806d4bfc7037aed5b7bc3f2c318713da41b7150d636946c
MD5 4870a80b6f9ec6c560c830f5fbbfdb8c
BLAKE2b-256 47f9fc922847a42cf9d9603a719ead1edae8ca9c701339a394cbf6ebc76498fc

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f935ac38e56a195b31142b42041ffc322eb4864e7698e37a49449c030189a3e0
MD5 bb87b7a22f4d72ca512a1deb8b6e97f6
BLAKE2b-256 c5da6f4d6c1960ce47cff17d734037cea72fa8efd177cb35183d53a8fedeac81

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 763b773f46cf7a4fca6c64716aa48e9484f543f1f083c278bd5ee51d763dc028
MD5 0dd5cffb41b107beeec91714d0f12648
BLAKE2b-256 ee55aeee93ad4df987ae38be580adcfda75d06da1fe0ebdfdc0c00caf7edc643

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f5a83fe1cb571e2217c4ccd2d97dbe24aa3ca1ea91d7a150346b070226776f88
MD5 cefdb017666e02e253a902f3f83c5239
BLAKE2b-256 b753339c3b6c7fb1a41986ee64dcaa2c10a0547c06fa71ffaf42317605acebdb

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.3.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for lets_plot-4.3.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a81360769e25152f9323b9990cdd419bcdc6dd9dac8d7342c5f4f0a6540f4335
MD5 c25adb4048f36171da9b7bca79d3dcdc
BLAKE2b-256 8e9b3afaa68bffa5186bc8783ca0b3883e30fa21d14d6495f9e0b3ced2751269

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 98860d780a1f461fdd0e3f181e529988e6a7e2a22f6c3d78483aab888dd3a8ed
MD5 1048f6022dc7ef20659b33199fe41fe7
BLAKE2b-256 0894f06203504ddc481f90b092c864302959adb8b8378d32ac810616b51cb1d0

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 105ff4dbf9591b20ed194989ba391382cb1f1625187ffbd25a38c6899a63df2f
MD5 dc0b503721063556f871ba8e688339a6
BLAKE2b-256 2eafef35ced3c23fcbd8bc83cecdfe0ab6e0e06eacaf5be3897acf27c2cdedbd

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ac8077f600d232121541fb18475aa39ba3d4724858575a128ddf70d961e0d7da
MD5 f552adb8f9bf68dc27a27108b191d6ba
BLAKE2b-256 7b0cf60251d42df1df75fdc8ece5760b556dabc4fa6f3e01d100c48248b3cc05

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fa5d168a29cd56400493090ef00daa59e7937ecc526b9642d5b7d931110805e3
MD5 821b9a769e8d15120e5e7a1ad67e43de
BLAKE2b-256 44405a14b1cd393433c4089ea292e43127b1790403ccf2d5168ec56867ecac2f

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.3.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for lets_plot-4.3.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2940994e8ee2cdf4038e8718c6a3bf18a7292ab9c169a4fdf07453a349447738
MD5 24a4ecfa6eef450e5a37d890bdcdf51d
BLAKE2b-256 0bac5119530c6bafe93f4f20bbbf18a63fa80cfaeac04db82e21fd011e572550

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 96c29d4db598d963dba34e5686fb251fdae59f7621952ef8840179089e0b95d3
MD5 ce2cf833fe80fab9111fc50c0a85d633
BLAKE2b-256 78830d6f661e134659bfa868b5a8ef2ff7650eb850dbdd34e86aae29f216f167

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 80d976ab9d6b61f18d3464143266cb00e6b53c6b6176fbc24acc4685b12a5c19
MD5 89f986b0eac18a5e3e116d395c049351
BLAKE2b-256 6e83a74d637f72f64a833d990e9f1475ff9b525f4069c27b2ef597e03a545de4

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 240fce9a4b1dc2370068c10392fe50c06ad0d3e5b78777a6ed8fa708b457aed7
MD5 a61ca7954be0e09523e21a11bc449dca
BLAKE2b-256 fc673cfcc7da6dd10de7af751cbc357413bdcb20f79385f4c9e95d4d6946c68b

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0a4ae878537ca6fa0fe1c7f60ed9023a21bfa5d9c92208d8be92e088b5c7ca45
MD5 1563fcae2b9026185523bd421c60a28a
BLAKE2b-256 74213b0e841240f21e6b625bb6497588deb96bf2e9aa23350c953791c075be3c

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.3.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for lets_plot-4.3.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 958ed1e4327e1e4a1469a8b31ba5202e140df6117915f47a13117b5efa7330a5
MD5 7f7dca656bf01bd87be34253cd8c9a05
BLAKE2b-256 3b75374890ce77fa82cee3bf32107ede20b67c0933f2c5d2b6e9d431bf165cbc

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4c2b1c23b7b6d007699992ba4742838d320c854011ebd463c810106f7843733b
MD5 5792a8e4282351180535326798797567
BLAKE2b-256 a356b62bc012057081536b95d6a75eb96476fae4ef74f77f66c2e3d772a14ccb

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 473c1c100a26f113dc6c1be575980a83d264d0ad6ae4e275b88d29aa1bc56f98
MD5 ef2d66003dad918aea5e36e2e481ce17
BLAKE2b-256 4ba10cf0caf98f5738a7e829d009b6940b75ba6dd5d94f63de604c11b1f62efa

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e894a3abb451c436866da980c9e0946f2ca4b9b1ff36846c5dfba2de0af20ede
MD5 6d779c418713b542c6544da3ca51fcb2
BLAKE2b-256 d2693eb2605d79aae8f102a38a380765ced56c52bda6265bb8104a7f3748f0da

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c407b90a515c236d5478381b7a6c907ae366c09c46c574b697c99c32b471a917
MD5 15ebf75cb4fd93a1f11bca2d0467b82f
BLAKE2b-256 e97a02d7206e57208667eb64225183aeb241ed01ff2385cfb81470c1abf8c8bf

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.3.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for lets_plot-4.3.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 88424e7239134579baa70f848ace32d975d78c961767b5e12becb54a84d7628e
MD5 be22c881f564eb8456389082a082fb4b
BLAKE2b-256 c084cb4bc1bebcb5cec50a6c365baecf984ebf5324ff8bf985757d2fb4260c7e

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7a10ff3cb2434ebd0dd0daf2ba820bffb51eb8df4cfdb522d1cf718be473c3d8
MD5 4105f0c45d870dfbe90257c718234759
BLAKE2b-256 4a4c18b356eaac6e70011b535916554ed0b2c3d288eff1bda096351aca8467b8

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bcdb34330598adfe58ba8bd89be2ad83d1882cbf11fd030e8f1c7a81f8daf060
MD5 8c8f49852d944dc57b7bb62318eb05d6
BLAKE2b-256 29ea2b65f8246d5e90fc19b45c840c44976b2f0e52dd598a639c4f5414a755d6

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 167afbec4b27913f87ff31708f2fdaebde7cf3813b4768aa897084c58c15ff70
MD5 4e5887405afd96d1fdef34532933e685
BLAKE2b-256 2160f6830f5f075e681a36927d01ece520b347b1ceeb0dac3f22c3005103a93a

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page