Skip to main content

An open source library for statistical plotting

Project description

Lets-Plot

official JetBrains project License MIT Latest Release

Lets-Plot is a multiplatform plotting library built on the principles of the Grammar of Graphics.

The library' design is heavily influenced by Leland Wilkinson work The Grammar of Graphics describing the deep features that underlie all statistical graphics.

This grammar [...] is made up of a set of independent components that can be composed in many different ways. This makes [it] very powerful because you are not limited to a set of pre-specified graphics, but you can create new graphics that are precisely tailored for your problem.

Grammar of Graphics for Python Latest Release

A bridge between R (ggplot2) and Python data visualization.
To learn more see the documentation site at lets-plot.org.

Grammar of Graphics for Kotlin Latest Release

Notebooks

Create plots in Kotlin Notebook, Datalore, Jupyter with Kotlin Kernel
or any other notebook that supports Kotlin Kernel.
To learn more see the Lets-Plot Kotlin API project at GitHub.

Compose Multiplatform

Embed Lets-Plot charts in Compose Multiplatform applications.
To learn more see the Lets-Plot Skia Frontend project at GitHub.

JVM and Kotlin/JS

Embed Lets-Plot charts in JVM (Swing, JavaFX) and Kotlin/JS applications.
To learn more see the Lets-Plot Kotlin API project at GitHub.

"Lets-Plot in SciView" plugin

JetBrains Plugins JetBrains plugins

Scientific mode in PyCharm and in IntelliJ IDEA provides support for interactive scientific computing and data visualization.

Lets-Plot in SciView plugin adds support for interactive plotting to IntelliJ-based IDEs with the Scientific mode enabled.

Note: The Scientific mode is NOT available in communinty editions of JetBrains IDEs.

Also read:

What is new in 4.3.0

  • coord_polar()

    The polar coordinate system is most commonly used for pie charts, but
    it can also be used for constructing Spider or Radar charts using the flat option.


    f-24a/images/polar_coord_pie.png f-24a/images/radar_chart.png

    See: example notebook.

  • In the theme():

    • panel_inset parameter - primarily used for plots with polar coordinates.

      See: example notebook.

    • panel_border_ontop parameter - enables the drawing of panel border on top of the plot geoms.

    • panel_grid_ontop, panel_grid_ontop_x, panel_grid_ontop_y parameters - enable the drawing of grid lines on top of the plot geoms.

  • geom_curve()


    f-24a/images/curve_annotation.png

    See: example notebook.

  • [UNIQUE] Visualizing Graph-like Data with geom_segment() and geom_curve()

    • Aesthetics size_start, size_end, stroke_start and stroke_end enable better alignment of
      segments/curves with nodes of the graph by considering the size of the nodes.

    • The spacer parameter allows for additional manual fine-tuning.


      f-24a/images/graph_simple.png f-24a/images/graph_on_map.png

    See:

  • The alpha_stroke Parameter in geom_label()

    Use the alpha_stroke parameter to apply alpha to entire label. By default, alpha is only applied to the label background.

    See: example notebook.

  • Showing Plots in External Browser

    The setup_show_ext() directive allows plots to be displayed in an external browser window.

Recent Updates in the Gallery

f-24b/images/gal_venn_diagram.png f-24b/images/gal_spoke.png f-24b/images/gal_indonesia_volcanoes_on_map.png f-24b/images/gal_japanese_volcanoes_on_map.png f-24a/images/gal_bbc_cookbook.png f-24a/images/gal_penguins.png f-24a/images/gal_periodic_table.png f-24a/images/gal_wind_rose.png f-24a/images/gal_polar_heatmap.png

Change Log

See CHANGELOG.md for other changes and fixes.

Code of Conduct

This project and the corresponding community are governed by the JetBrains Open Source and Community Code of Conduct. Please make sure you read it.

License

Code and documentation released under the MIT license. Copyright © 2019-2024, JetBrains s.r.o.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

lets_plot-4.3.2-cp312-cp312-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.12Windows x86-64

lets_plot-4.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

lets_plot-4.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

lets_plot-4.3.2-cp312-cp312-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

lets_plot-4.3.2-cp312-cp312-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.12macOS 10.9+ x86-64

lets_plot-4.3.2-cp311-cp311-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.11Windows x86-64

lets_plot-4.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

lets_plot-4.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

lets_plot-4.3.2-cp311-cp311-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

lets_plot-4.3.2-cp311-cp311-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

lets_plot-4.3.2-cp310-cp310-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.10Windows x86-64

lets_plot-4.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

lets_plot-4.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

lets_plot-4.3.2-cp310-cp310-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

lets_plot-4.3.2-cp310-cp310-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

lets_plot-4.3.2-cp39-cp39-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.9Windows x86-64

lets_plot-4.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

lets_plot-4.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

lets_plot-4.3.2-cp39-cp39-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

lets_plot-4.3.2-cp39-cp39-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

lets_plot-4.3.2-cp38-cp38-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.8Windows x86-64

lets_plot-4.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

lets_plot-4.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

lets_plot-4.3.2-cp38-cp38-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

lets_plot-4.3.2-cp38-cp38-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

lets_plot-4.3.2-cp37-cp37m-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.7mWindows x86-64

lets_plot-4.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

lets_plot-4.3.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ ARM64

lets_plot-4.3.2-cp37-cp37m-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

File details

Details for the file lets_plot-4.3.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.3.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for lets_plot-4.3.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 7fb3b76196510339b49a8d0acc521fde33549685ae619183d3b1fd85db37e5aa
MD5 3be112dc18bedda9b72eddf85cd86ce5
BLAKE2b-256 40914cda9202d446e5d0350d74a75d21b0387bb8c55faaf9804b9b8deaeb3fb0

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 08d1572d529c60ab857c49afdbab541373b04a4b98beac9780c91bb9cd0a75c9
MD5 6d5c739cb59809795105f1568d747d51
BLAKE2b-256 2d08a3c7705852ee7c0cf3f9331a5b7aa55c71fbd7b2c28c5b4090d36d89e2a1

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 65e8963727c364a7213dc848a8062be6c4c73f5b98577f536ec00f367017aad8
MD5 41e25871dc1ecb6d4628e769207b5504
BLAKE2b-256 8769309176634c9790b243eb86c606a4384b70d354ff2792b8271bc92fc5daf1

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1bf28759a737d29ebfdae2c96da9c1a6fd884df93b9536bdfc67eb2015a6b083
MD5 6b996eb2f0011d91ed4f0b1b790eb3fd
BLAKE2b-256 624b8c38b1cf58f241f2cfa3a1dc28bde90932e3d4124390e0b7aaa56ba6c974

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.2-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.2-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 938477f1b59ce35e85489b95ea9fa7ad3af07dfb657f57039124f9fdc7b19e49
MD5 1ed0f3c1298341f3b1aa8cc311185ccc
BLAKE2b-256 15c5d8011fef112be07098876b294d45b982505a6096b644eedd623edec97cee

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.3.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for lets_plot-4.3.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c612446723948c4df0ecf63b1a30dfe12858733582765df05be6be8c29cc247a
MD5 ee6f3919b353673556eecc9b367e75d3
BLAKE2b-256 81c147db3f015d946d0cbaa3807b9dc1b1b3dd834afe4f554b282f9cba9fc22b

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ab337bbc1a3d1f79ccbd468a2f52d78d78f97f53d34c0d14a20a70d90d2803a7
MD5 3e70d34c3d1d0fe3c74880a5a6bcbf7a
BLAKE2b-256 4f6af3a5e3f6667a3a3f43f3868eb1ef9182dd2ce55bd2e19462cbe3006227f8

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ddc3e215532548d4edfa79f077c9c45d87b8bce7f365b5174cdff787f30765ad
MD5 38ff84b19473fdb0c6c406d1d4b27e0f
BLAKE2b-256 1451ac315b572e6a289894225b0bb591082150f0791179a228782026d00f7c77

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cb44952f60e2f929b1268136fbb37dccc39dae10482063dd6df1e4dd26650da1
MD5 5e206106ee5abe70e3ee91749d1d0708
BLAKE2b-256 62e3c8a3c655ae13e1a327ac4657377b131f7ac2d6d9207e5d660ef952b60a02

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 588e90175400a92f4a655b164b7c9a4862ea4641306d93bebfa35ffd14808564
MD5 e9c0f37cba75d05d4b8f5e74cca9c8fb
BLAKE2b-256 9d0c615e27d664d030e853766afc719514ab615571ecd3a6523fd7a1361961f3

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.3.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for lets_plot-4.3.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 79177f66bfebd219f3189df3f6a5c9fb7f41318717461fc0395ed6e2e4ebf471
MD5 3b608e49ebf52dd859150481bda39166
BLAKE2b-256 c77030292a1277a57db8c63c6c491a7d5b916bb6040615eb5c1d2b7e4f51c399

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f86af45faea3dab4abe49c25b85330be6307b820edc764eeeba4cc5f5cb7ea38
MD5 701190be8dc2ced98b4baac3a54f3868
BLAKE2b-256 761826b461bd5c894865b5d46e4add74d8fcef8ffa68da3c2bf8d132eaba2cd2

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d1cdc0c1d3118859609ccddf9916e2a2b5821abd9aa273ecb1951e716c293a17
MD5 7775ec1139fa3943aaa59e967eaf0ad4
BLAKE2b-256 9310dc2aaf4881a040c9820d64d87633a9fdab0254e97d23ae6e44f7cf629eba

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9317a695049b7547c95581d9cb7695e2e5598aac448d3591193ed44c80595fec
MD5 d4823b6f1610566978dd2998e303f6c5
BLAKE2b-256 f7783edd47e410bbc7e05f5de99d663c3b63b30de0b0f17289df5f4da4fd0a73

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fdf05e7c7f715823e0fb15429b8c3d602b5aedfa9a6b4510c3fffa89ba427972
MD5 835e27b27ec9e0c63cae425b3da65896
BLAKE2b-256 a9d576e210d4508601940f73a1ade44201c14629e3d242b9109dbc803053354b

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.3.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for lets_plot-4.3.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ff042710b2b708d17d6b99b6ed30bc75c5a976c1297a121f253c9bcb8b026f28
MD5 530eab2f736721c4ede10889c70a5eef
BLAKE2b-256 1c111b55acef3796e76935476992332a690f7c9efcb0d464b39e7d40f7c50483

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6a1043c0888a5adc0a0366e675df077b1b3c0d424fb308b7bd82d29959709dd2
MD5 cd5b16095f223129a708640aa75afba6
BLAKE2b-256 d890f2b841fd8a285419210299e19d651cfca411f51801f7a579adbb723bba05

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d48a13bd50844b671d3ff8dba06443a974ec4794e3f90c89075ab74e1329a9b7
MD5 0279617e671bb4cba16998890def54e9
BLAKE2b-256 e059bb6c2d707e421a05d16dbef29c48c5093a3a2ea212d673e0e6ba407cc711

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2df9759cd981129f8c6876cf0145899a7f75e8379561db8e93fcb7eaf22bc9e0
MD5 d3a938b695c6922afa5b7ebe88865ab6
BLAKE2b-256 adc52521975c3d4631cc6c04c7a450645d0e6ff1bbd506ffc2f6710701fa2771

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 462253ac7bfb835eeaa65aa875d928bfabc20e340a6ab9a70b9f3be848416e3a
MD5 f1547381d2d22d1900e0e31a63043a50
BLAKE2b-256 1dfe7585ea1d66a82d18e6edfce05389a28554a78cbd767667f18bbf4720fdfb

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.3.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for lets_plot-4.3.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 7eb2508cd0f979466decf66fcfea9bf2738cd805420960e163c7ee6f222dd04f
MD5 91d7c28e2dd91e75c7f19035024daa71
BLAKE2b-256 fcbaaadadd8254958ee9edca2eeae367e39a46d7ff66ccf249326111991ba8ae

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3b0b5f9db6e0a9b81ac656b5921b2c82cb1c8859b59e0a518e82fe598b02519c
MD5 2ab306a46aa738d2400a8cc14377c5d7
BLAKE2b-256 2f21745ccd17f591fba5cdd848704ddc8c7c14daad9881e911bbad6871f9ea6c

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c65e713eef2dbf32011da29d7532b55da5eb33d3a3a82f838618b74e578948ac
MD5 a75e2ad136a83deaf7830987ab312e30
BLAKE2b-256 06b16b0b178a0332756b9d9f7222e8e212fe4797748eed6b14507aa8bcb47867

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6498105dd9bee87cf0a599ecd851a0a8ede0781455c23ef2b8d6c9dba914ec8d
MD5 79b067882a49c8388d860a45b3cebc94
BLAKE2b-256 0eba254c5880d771e5d5c91505300e86c70dac38e165f2c26d48ef6eee7828e7

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4c586261db1d88680e1ac6f4d506e5c971ef6e148163880ef091cdfb2b60cad5
MD5 5739356cd84105846ef834ceae574576
BLAKE2b-256 440af2188b71c661c9f1597141fee2c42cc10032e3272a3ef1151353b2202ede

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.3.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for lets_plot-4.3.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 0c1f14d739322d252c451e0cd0e3e8fdc31177d10728aaa0d5f4201cef5b9343
MD5 a8f2625ace258d39402213865ecaa962
BLAKE2b-256 08255257344e2aa4b1cc64ecb6f1d18c432b7f76bd050d1c8cf620125ea83412

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fef17d5442415a8cd302f0e71d448d75535b06cd699e4097f1dc24da0ec1d8ca
MD5 6cd1bfa123a1dd8703e575cda0168697
BLAKE2b-256 ad7f5a19aaf747a72ad64ac13c6211841be6a8e01619b43d3ac9f542b7385032

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dd7fbb95acce68b4cbcdd56fc99ff94656b257522496031f152e5c2eec6f7be7
MD5 d14e5d9969e7124a0439c76795c60f06
BLAKE2b-256 d178b24caa96cedd483aef0c9ba27da80f70ffa271afab76baa2f5b0a106586f

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 01d75a0216175a3424d818ed2befe4f301467142271b1a247e04339acc33ffd5
MD5 4c60f2d841e2da42dda038acdc6e14cd
BLAKE2b-256 0febaa7f606521623a188b0580cd6a85a16c277f5b3dc2b8ded9dc3f5c93a0a8

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page