Skip to main content

An open source library for statistical plotting

Project description

Lets-Plot

official JetBrains project License MIT Latest Release

Lets-Plot is a multiplatform plotting library based on the Grammar of Graphics.

The library' design is heavily influenced by Leland Wilkinson work The Grammar of Graphics describing the deep features that underlie all statistical graphics.

This grammar [...] is made up of a set of independent components that can be composed in many different ways. This makes [it] very powerful because you are not limited to a set of pre-specified graphics, but you can create new graphics that are precisely tailored for your problem.

We provide ggplot2-like plotting API for Python and Kotlin users.

Lets-Plot for Python Latest Release

A bridge between R (ggplot2) and Python data visualization.
To learn more see the documentation site at lets-plot.org.

Lets-Plot Kotlin API Latest Release

Notebooks

Create plots in Kotlin Notebook, Datalore, Jupyter with Kotlin Kernel
or any other notebook that supports Kotlin Kernel.
To learn more see the Lets-Plot Kotlin API project at GitHub.

Compose Multiplatform

Embed Lets-Plot charts in Compose Multiplatform applications.
To learn more see the Lets-Plot Skia Frontend project at GitHub.

JVM and Kotlin/JS

Embed Lets-Plot charts in JVM (Swing, JavaFX) and Kotlin/JS applications. \ To learn more see the Lets-Plot Kotlin API project at GitHub.

"Lets-Plot in SciView" plugin

JetBrains Plugins JetBrains plugins

Scientific mode in PyCharm and in IntelliJ IDEA provides support for interactive scientific computing and data visualization.

Lets-Plot in SciView plugin adds support for interactive plotting to IntelliJ-based IDEs with the Scientific mode enabled.

Note: The Scientific mode is NOT available in communinty editions of JetBrains IDEs.

Also read:

What is new in 4.2.0

Change Log

See CHANGELOG.md for other changes and fixes.

Code of Conduct

This project and the corresponding community are governed by the JetBrains Open Source and Community Code of Conduct. Please make sure you read it.

License

Code and documentation released under the MIT license. Copyright © 2019-2023, JetBrains s.r.o.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

lets_plot-4.2.0-cp312-cp312-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.12 Windows x86-64

lets_plot-4.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

lets_plot-4.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

lets_plot-4.2.0-cp312-cp312-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

lets_plot-4.2.0-cp312-cp312-macosx_10_9_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

lets_plot-4.2.0-cp311-cp311-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

lets_plot-4.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

lets_plot-4.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

lets_plot-4.2.0-cp311-cp311-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

lets_plot-4.2.0-cp311-cp311-macosx_10_9_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

lets_plot-4.2.0-cp310-cp310-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

lets_plot-4.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

lets_plot-4.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

lets_plot-4.2.0-cp310-cp310-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

lets_plot-4.2.0-cp310-cp310-macosx_10_9_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

lets_plot-4.2.0-cp39-cp39-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

lets_plot-4.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

lets_plot-4.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

lets_plot-4.2.0-cp39-cp39-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

lets_plot-4.2.0-cp39-cp39-macosx_10_9_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

lets_plot-4.2.0-cp38-cp38-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

lets_plot-4.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

lets_plot-4.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

lets_plot-4.2.0-cp38-cp38-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

lets_plot-4.2.0-cp38-cp38-macosx_10_9_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

lets_plot-4.2.0-cp37-cp37m-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

lets_plot-4.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

lets_plot-4.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

lets_plot-4.2.0-cp37-cp37m-macosx_10_9_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file lets_plot-4.2.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for lets_plot-4.2.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 a523371996c3b888b8f8e8525751c8ed7954f0fd924886c1a6c413a5c8da82e2
MD5 75734cebd2d290c309649f70f4ca73ee
BLAKE2b-256 a84b52653ab29dd247c3e28f8db6c9999c82eecdda95ba8907edaaa642768395

See more details on using hashes here.

File details

Details for the file lets_plot-4.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4e33a2a3226b36267dea0507e9a31fd4b1e2ed5239c57a069a27f27e07c20e23
MD5 7152ab18a5db656083d8624f68eaf494
BLAKE2b-256 a60662d87b81beb8b2420f9ca1cf90a43d9bb5b985bca3170f75e351c0180725

See more details on using hashes here.

File details

Details for the file lets_plot-4.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 38126cbfb05988498cffc8aba5585da56bf2a10fdb6c92d7b15946bcb85ed182
MD5 688906e258e84473901a196a9b8e093b
BLAKE2b-256 24e337845cf3c7fbedc7ff13dc19b2b8969d683753093d9162754647a117396e

See more details on using hashes here.

File details

Details for the file lets_plot-4.2.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.2.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d569ebbac50f4a62c83f82b45525fd76ee9fea17dfeaa8af78545d3dd051cff6
MD5 8c4a55c47028d50f59d2fa1bb5d1d146
BLAKE2b-256 f9a84988778750092e40fcc6bf8fb036eb24ffeb2502216f58938d97c773f9a7

See more details on using hashes here.

File details

Details for the file lets_plot-4.2.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.2.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 044e4c0e7539d00382489031681d5e673d9aa05720c45538de0eb432b1fe3bdf
MD5 31c0ebe1e389850058bdcbd7a7963064
BLAKE2b-256 f49f8298361a64461a428ceb48c783f87bd947753c27cf2f6262254c7c68d03f

See more details on using hashes here.

File details

Details for the file lets_plot-4.2.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for lets_plot-4.2.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 b93d997588e6fe18cb992af8bcccaf244b4e2198379cfbec8508d1b0f014991e
MD5 1d945f7073773f804cdfb94136c5f88d
BLAKE2b-256 29d26cfc54354c0c54287ea4f4bbd262b4f79908a9005ec82ca1aebca9e9051f

See more details on using hashes here.

File details

Details for the file lets_plot-4.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bc4d1468744eee89e03ff54b55e56fd2ff2a164faca4da2f43aa7eba431ba425
MD5 7e92ec664d8962ed68508d915574ed30
BLAKE2b-256 86421b63801d6cde3e7f76ae14f340a9393d300744c0f26b95572aa1dc8088d2

See more details on using hashes here.

File details

Details for the file lets_plot-4.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3f5a9420840fe7494413ec54f90d4153952e788a8949a3bc85d0b05770da9e4e
MD5 b17ca35fa9ae40253edbff9e3a6995e4
BLAKE2b-256 faa8ef24edb52053c51cf6bcc1408c9b4f2c36d0aa6a5752295b206438b4331e

See more details on using hashes here.

File details

Details for the file lets_plot-4.2.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.2.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1752d922fc2a35262ce948c8436c13c999589824e154579db32ac84db5dc2bfc
MD5 be3bcf612486b5dcb8bb942c4aebea82
BLAKE2b-256 0d0e0cf659e56d06fbc7169517fdf772f36fe1b26fef90a1b705549dc4e95c9b

See more details on using hashes here.

File details

Details for the file lets_plot-4.2.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.2.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8d8799bdee0345804ae7e4dc1ce1b56dda0bcea7802e65df54831432fe96e7e2
MD5 e2507247560e53f097d596309600d48f
BLAKE2b-256 aee475182e263c7e2e0e54488adc90a3eadc4fe92004e733b01c3aabaf38f094

See more details on using hashes here.

File details

Details for the file lets_plot-4.2.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for lets_plot-4.2.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 1b2cedc6b3bae020323a0c1c17bc3027583d12c4a1fb65903f0402bf32c97753
MD5 d6cde09133b99660f60f7a4d6d74aa8f
BLAKE2b-256 745ef9efe775f051ab01fbdff2882e9a0346368d92a3472cdd7822026d0160b9

See more details on using hashes here.

File details

Details for the file lets_plot-4.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a59aa0593868c7081e56f2045988f3de1e658dd264fac80db9a484a562b06f0c
MD5 0a2eeafeba00dd16db6204347aaecd1a
BLAKE2b-256 43e3e0277e44ef8a0da17452e5be81a7c4d3912328c092ae5b90aeb747342718

See more details on using hashes here.

File details

Details for the file lets_plot-4.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ca1f29d087f8f0a3d6bda8ac52f369b8357f005f92059d7d0169771eb866eef2
MD5 dfd7ccbefa03af97ab9e2bf6b8ac98b6
BLAKE2b-256 2c14d73c64583cfd1d281bef854482abdfb7ca6fed42b58c06209bf89dd27143

See more details on using hashes here.

File details

Details for the file lets_plot-4.2.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.2.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f02f76f64dbe6dd6cee45220cacc56559a86c23c17b9d5da4614a1127a4dec21
MD5 69b7a4b526dc8dc268609972a8329ec9
BLAKE2b-256 28788dbe590ab032d08a2befd17768ed83312c83e9e29efcda7631795e8c1c92

See more details on using hashes here.

File details

Details for the file lets_plot-4.2.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.2.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 070e5c03bc1785418d0bbfec3b6ec51e774d5dea137778b88e95474ed52759e4
MD5 59b62d00aed4aa595c6f0a7b17544ab3
BLAKE2b-256 2c52001fe4acbfde562cf371304425a5c3c99ead360261e5f79783c28868427e

See more details on using hashes here.

File details

Details for the file lets_plot-4.2.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.2.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for lets_plot-4.2.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 33b784076eb1f1ffca1313532da6f3905a4b0ecbfc062afcf522e47795d2ce5a
MD5 87b1b7e84a3baa440c729013107ed744
BLAKE2b-256 cd9b4589ca807ec743efbc9095a4579a00f65b6136863e1b7804746162a0333a

See more details on using hashes here.

File details

Details for the file lets_plot-4.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 69a47775afe027ff9eb1b12fa5664330b5b67135388e00c39a53a15ac4e8d9b0
MD5 ba49e53273359292e0ce0800319c7314
BLAKE2b-256 49cd6e74f281bb903d85f1fd1e6aa71c6f6e9254f58a60651b0288df4fc77b88

See more details on using hashes here.

File details

Details for the file lets_plot-4.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4720c35b05b19bad926a1205e8b8b622ef23be6362739ca398a695016725352a
MD5 d611dc10f99fcddf212bac2dce2aa1e1
BLAKE2b-256 b67bd3697986a530157358202bb8b6a638ed9930082e4e0dac548d05545ea419

See more details on using hashes here.

File details

Details for the file lets_plot-4.2.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.2.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 43c5bf4f803c338285cca669a8d335336adf92c52107aafe3610b7fcd0411c13
MD5 3cb23448be51a33074e4643933a2da24
BLAKE2b-256 9888a7aa81358c40f06399e35334b9757b54c0b08f650a5a9c6632a141a7c657

See more details on using hashes here.

File details

Details for the file lets_plot-4.2.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.2.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b42990964732d8da407481a5e0279e07e9ad6cc247deff3a78ab73b4a9f1bfa1
MD5 696f670df98c37630fd6d059c10a12e6
BLAKE2b-256 c7cdfb897fc4a43728818b9ec4cdce83aee3f725918198e0107fd4b31c6cdcd5

See more details on using hashes here.

File details

Details for the file lets_plot-4.2.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.2.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for lets_plot-4.2.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e88356359d0940b599cc76a8ae3f98bc80ceebdb2c0992abaac47e9e2f82ba23
MD5 2fe0a1c38b76e2a05d904be03e9d2f84
BLAKE2b-256 dbc93290b64b0fbf99e04b9cca5dde276688b8693af8b94f10fa02a6ab27429b

See more details on using hashes here.

File details

Details for the file lets_plot-4.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 adfb1b0709f5b51f6465dfc03f2cc56337c68bbcb083048a5c8a5043ea8cbbf7
MD5 feb90477d9ee41e19ecb178d97a48b1b
BLAKE2b-256 f3ac02bf9cc17c0ce50f8d1a819a139461af3d2b9917f84a82a132d4098ec53b

See more details on using hashes here.

File details

Details for the file lets_plot-4.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 40a2281e66eb9a748a08deea2c79b7ad066b923371805c9668e3c4ff7eedc047
MD5 c2709d24ebf7f7d06accb6bc54e9afec
BLAKE2b-256 caac784dd4fc97c1a1c0b6c5b231f869ea54b8bf634ce14cf9142b90a8f1767f

See more details on using hashes here.

File details

Details for the file lets_plot-4.2.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.2.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c6687d9378a48fdf188de2fff121cda4f904e9f8865554123b24f37d12a08543
MD5 9d2942a1f185f43de6e2a1d7a2b74764
BLAKE2b-256 0b6f8f2e9515c0351cf2d40a3dce42568013fde2837b5e25b1c377ff0865411b

See more details on using hashes here.

File details

Details for the file lets_plot-4.2.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.2.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bf788b577ad075ab49c7baea28ef404164ab587041c723b5ae5332f55bec9340
MD5 581bea3622d09312c1a20fa4059a8375
BLAKE2b-256 796a1e1f8848093b12800c9aaf645a33f2da0506300bcfd435fa0880d1737039

See more details on using hashes here.

File details

Details for the file lets_plot-4.2.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for lets_plot-4.2.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 341f553a5d440517c5fbf8e268e0a0c9523b21b0a4cbf78392343084c4191438
MD5 2b0f980d61dc9f3df01fb6493f8bdf3b
BLAKE2b-256 cf02e76b671e03796230d15cddcbc88a3617efa14dd8589a94ff1d91e60a9803

See more details on using hashes here.

File details

Details for the file lets_plot-4.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d1ab066e5ac416bb94fd136c53e67399db44728c71c2a6695498c21900754213
MD5 5e3c50ffa8a867f612ea13d5d41bdc91
BLAKE2b-256 1a8954afdcb0fe40140b9f9fbe9d975d21fcb146581ef8dd0f670cae6aed6e35

See more details on using hashes here.

File details

Details for the file lets_plot-4.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8be85a49768f22dc386a8aeddc6186942dafe0260c2c879bd7b1d9490169350f
MD5 bafb91e24d8d301054670c19a66d3078
BLAKE2b-256 c71936ae38a0db70bda8a4c5993aac79b99441c47d3df39d5ea7bdd9ed8498cb

See more details on using hashes here.

File details

Details for the file lets_plot-4.2.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.2.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fef61d3a2725ecf5514ff781cd10396a556d4f2af295d389ede960412f295e51
MD5 8a4078b23ca93054faefc3ed3745ada9
BLAKE2b-256 93c79f49be823c8542decb2b314489840609b42ae42237ba3b868aaf0688f768

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page