Skip to main content

Package implementing PLN models

Project description

PLNmodels: Poisson lognormal models

The Poisson lognormal model and variants can be used for analysis of mutivariate count data. This package implements efficient algorithms to fit such models.

Getting started

The getting started can be found here. If you need just a quick view of the package, see next.

Installation

PLNmodels is available on pypi. The development version is available on GitHub.

Package installation

pip install pyPLNmodels

Usage and main fitting functions

The package comes with an ecological data set to present the functionality

import pyPLNmodels
from pyPLNmodels.models import PlnPCAcollection, Pln
from pyPLNmodels.oaks import load_oaks
oaks = load_oaks()

Unpenalized Poisson lognormal model (aka PLN)

pln = Pln.from_formula("counts ~ 1  + tree + dist2ground + orientation ", data = oaks, take_log_offsets = True)
pln.fit()
print(pln)

Rank Constrained Poisson lognormal for Poisson Principal Component Analysis (aka PLNPCA)

pca =  PlnPCAcollection.from_formula("counts ~ 1  + tree + dist2ground + orientation ", data = oaks, take_log_offsets = True, ranks = [3,4,5])
pca.fit()
print(pca)

References

Please cite our work using the following references:

  • J. Chiquet, M. Mariadassou and S. Robin: Variational inference for probabilistic Poisson PCA, the Annals of Applied Statistics, 12: 2674–2698, 2018. link

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyPLNmodels-0.0.63.tar.gz (3.4 MB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

pyPLNmodels-0.0.63-py3-none-any.whl (139.5 kB view details)

Uploaded Python 3

File details

Details for the file pyPLNmodels-0.0.63.tar.gz.

File metadata

  • Download URL: pyPLNmodels-0.0.63.tar.gz
  • Upload date:
  • Size: 3.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for pyPLNmodels-0.0.63.tar.gz
Algorithm Hash digest
SHA256 d8088fe35c3170b7f342f0dd34b91de1bc221461435fa9587cce7178923f12f3
MD5 b291d019a3acb8d1e1d5899a2333bdbf
BLAKE2b-256 bb9e1c39dbf71a9fca829dc8df7cba743a824b7cdddc53effa70b2f13b9ff3ea

See more details on using hashes here.

File details

Details for the file pyPLNmodels-0.0.63-py3-none-any.whl.

File metadata

  • Download URL: pyPLNmodels-0.0.63-py3-none-any.whl
  • Upload date:
  • Size: 139.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for pyPLNmodels-0.0.63-py3-none-any.whl
Algorithm Hash digest
SHA256 9a5f9a143a18bb0b7e583b61cd980452034c14bc96c6042b205ccf982f75498c
MD5 1e72ff06b8e7f56e6e1293c0e2229561
BLAKE2b-256 0afca43c8db68f48897db32c5d8e332297e3c172fc4d55a927b48cd69c29bb9a

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page