Skip to main content

Packaged version of the Yolov5 object detector

Project description

Packaged YOLOv5 Object Detector

Downloads CI CPU testing Package CPU testing

You can finally install YOLOv5 object detector using pip and integrate into your project easily.

Overview

This package is up-to-date with the latest release of ultralytics/yolov5.

Installation

  • Install yolov5 using pip (for Python >=3.7):
pip install yolov5
  • Install yolov5 using pip (for Python 3.6):
pip install "numpy>=1.18.5,<1.20" "matplotlib>=3.2.2,<4"
pip install yolov5

Basic Usage

from PIL import Image
from yolov5 import YOLOv5

# set model params
model_path = "yolov5/weights/yolov5s.pt" # it automatically downloads yolov5s model to given path
device = "cuda" # or "cpu"

# init yolov5 model
yolov5 = YOLOv5(model_path, device)

# load images
image1 = Image.open("yolov5/data/images/bus.jpg")
image2 = Image.open("yolov5/data/images/zidane.jpg")

# perform inference
results = yolov5.predict(image1)

# perform inference with higher input size
results = yolov5.predict(image1, size=1280)

# perform inference with test time augmentation
results = yolov5.predict(image1, augment=True)

# perform inference on multiple images
results = yolov5.predict([image1, image2], size=1280, augment=True)

Tutorials

Scripts

You can download and use train.py, detect.py and test.py scripts after installing the package via pip:

Training

Run commands below to reproduce results on COCO dataset (dataset auto-downloads on first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the largest --batch-size your GPU allows (batch sizes shown for 16 GB devices).

$ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
                                         yolov5m                                40
                                         yolov5l                                24
                                         yolov5x                                16

Inference

detect.py runs inference on a variety of sources, downloading models automatically from the latest YOLOv5 release and saving results to runs/detect.

$ python detect.py --source 0  # webcam
                            file.jpg  # image 
                            file.mp4  # video
                            path/  # directory
                            path/*.jpg  # glob
                            rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa  # rtsp stream
                            rtmp://192.168.1.105/live/test  # rtmp stream
                            http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8  # http stream

To run inference on example images in data/images:

$ python detect.py --source data/images --weights yolov5s.pt --conf 0.25

Status

Builds for the latest commit for Windows/Linux/MacOS with Python3.6/3.7/3.8: CI CPU testing

Status for the train/detect/test scripts: Package CPU testing

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

yolov5-4.0.5.tar.gz (742.3 kB view details)

Uploaded Source

Built Distribution

yolov5-4.0.5-py36.py37.py38-none-any.whl (750.1 kB view details)

Uploaded Python 3.6Python 3.7Python 3.8

File details

Details for the file yolov5-4.0.5.tar.gz.

File metadata

  • Download URL: yolov5-4.0.5.tar.gz
  • Upload date:
  • Size: 742.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.9.1

File hashes

Hashes for yolov5-4.0.5.tar.gz
Algorithm Hash digest
SHA256 a9cba1da283282c0bccd58136aa39665bc3217df168bf46c86f9e64237e91bdb
MD5 f354eff27a6e4bc70f8e404a789e21df
BLAKE2b-256 c1046f51c6036d5ac69572c27e2f44638654157206412920bec38b8f89a844fb

See more details on using hashes here.

File details

Details for the file yolov5-4.0.5-py36.py37.py38-none-any.whl.

File metadata

  • Download URL: yolov5-4.0.5-py36.py37.py38-none-any.whl
  • Upload date:
  • Size: 750.1 kB
  • Tags: Python 3.6, Python 3.7, Python 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.9.1

File hashes

Hashes for yolov5-4.0.5-py36.py37.py38-none-any.whl
Algorithm Hash digest
SHA256 cd469e2c3b19f9b70dba0d0048b249d7e7b111395139697ccb80422b7d964e21
MD5 1d97fccb3faa51eb67d29df004810247
BLAKE2b-256 c3ca7dac5e4a372801aec81626340e0a5e647ac0ce8cdc2e737cc6e627b2e00b

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page