Skip to main content

Packaged version of the Yolov5 object detector

Project description

packaged ultralytics/yolov5

pip install yolov5

total downloads monthly downloads pypi version
ci testing package testing

Overview

You can finally install YOLOv5 object detector using pip and integrate into your project easily.

Install

Install yolov5 using pip (for Python >=3.7)
pip install yolov5
Install yolov5 using pip `(for Python 3.6)`
pip install "numpy>=1.18.5,<1.20" "matplotlib>=3.2.2,<4"
pip install yolov5

Use from Python

Basic
import yolov5

# load model
model = yolov5.load('yolov5s')

# set image
img = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'

# perform inference
results = model(img)

# inference with larger input size
results = model(img, size=1280)

# inference with test time augmentation
results = model(img, augment=True)

# parse results
predictions = results.pred[0]
boxes = predictions[:, :4] # x1, x2, y1, y2
scores = predictions[:, 4]
categories = predictions[:, 5]

# show detection bounding boxes on image
results.show()

# save results into "results/" folder
results.save(save_dir='results/')
Alternative
from yolov5 import YOLOv5

# set model params
model_path = "yolov5/weights/yolov5s.pt" # it automatically downloads yolov5s model to given path
device = "cuda" # or "cpu"

# init yolov5 model
yolov5 = YOLOv5(model_path, device)

# load images
image1 = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
image2 = 'https://github.com/ultralytics/yolov5/blob/master/data/images/bus.jpg'

# perform inference
results = yolov5.predict(image1)

# perform inference with larger input size
results = yolov5.predict(image1, size=1280)

# perform inference with test time augmentation
results = yolov5.predict(image1, augment=True)

# perform inference on multiple images
results = yolov5.predict([image1, image2], size=1280, augment=True)

# parse results
predictions = results.pred[0]
boxes = predictions[:, :4] # x1, x2, y1, y2
scores = predictions[:, 4]
categories = predictions[:, 5]

# show detection bounding boxes on image
results.show()

# save results into "results/" folder
results.save(save_dir='results/')
Train/Detect/Test/Export
  • You can directly use these functions by importing them:
from yolov5 import train, test, detect, export

train.run(imgsz=640, data='coco128.yaml')
test.run(imgsz=640, data='coco128.yaml', weights='yolov5s.pt')
detect.run(imgsz=640)
export.run(imgsz=640, weights='yolov5s.pt')
  • You can pass any argument as input:
from yolov5 import detect

img_url = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'

detect.run(source=img_url, weights="yolov5s6.pt", conf_thres=0.25, imgsz=640)

Use from CLI

You can call yolo_train, yolo_detect, yolo_test and yolo_export commands after installing the package via pip:

Training

Run commands below to reproduce results on COCO dataset (dataset auto-downloads on first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the largest --batch-size your GPU allows (batch sizes shown for 16 GB devices).

$ yolo_train --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
                                    yolov5m                                40
                                    yolov5l                                24
                                    yolov5x                                16
Inference

yolo_detect command runs inference on a variety of sources, downloading models automatically from the latest YOLOv5 release and saving results to runs/detect.

$ yolo_detect --source 0  # webcam
                       file.jpg  # image
                       file.mp4  # video
                       path/  # directory
                       path/*.jpg  # glob
                       rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa  # rtsp stream
                       rtmp://192.168.1.105/live/test  # rtmp stream
                       http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8  # http stream

To run inference on example images in yolov5/data/images:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

yolov5-5.0.6.tar.gz (775.0 kB view details)

Uploaded Source

Built Distribution

yolov5-5.0.6-py36.py37.py38-none-any.whl (798.4 kB view details)

Uploaded Python 3.6Python 3.7Python 3.8

File details

Details for the file yolov5-5.0.6.tar.gz.

File metadata

  • Download URL: yolov5-5.0.6.tar.gz
  • Upload date:
  • Size: 775.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.5

File hashes

Hashes for yolov5-5.0.6.tar.gz
Algorithm Hash digest
SHA256 5c64b6d02785488359939adfb9fb2507952e09a4769ae0e109dd6a6d9cc7ee26
MD5 8ff8c2d60fabd198e2e4e1405b7a9c19
BLAKE2b-256 6122223b67f97f34d0cd68d97be2970a17151837e0342c39d66cf88c00c0f50e

See more details on using hashes here.

File details

Details for the file yolov5-5.0.6-py36.py37.py38-none-any.whl.

File metadata

  • Download URL: yolov5-5.0.6-py36.py37.py38-none-any.whl
  • Upload date:
  • Size: 798.4 kB
  • Tags: Python 3.6, Python 3.7, Python 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.5

File hashes

Hashes for yolov5-5.0.6-py36.py37.py38-none-any.whl
Algorithm Hash digest
SHA256 8f6d82bced1d5a3e68e9911ab25e763ed07cc42905582ee1a87833e04b4d692c
MD5 e9975f97075811fa9cd4319064e03963
BLAKE2b-256 76619117f7090603a620a4ce98cd348dc1e54bffd603f501416780917ea7c032

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page