Skip to main content

Powerful data structures for data analysis, time series,and statistics

Project description

pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with structured (tabular, multidimensional, potentially heterogeneous) and time series data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis / manipulation tool available in any language. It is already well on its way toward this goal.

pandas is well suited for many different kinds of data:

  • Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet

  • Ordered and unordered (not necessarily fixed-frequency) time series data.

  • Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels

  • Any other form of observational / statistical data sets. The data actually need not be labeled at all to be placed into a pandas data structure

The two primary data structures of pandas, Series (1-dimensional) and DataFrame (2-dimensional), handle the vast majority of typical use cases in finance, statistics, social science, and many areas of engineering. For R users, DataFrame provides everything that R’s data.frame provides and much more. pandas is built on top of NumPy and is intended to integrate well within a scientific computing environment with many other 3rd party libraries.

Here are just a few of the things that pandas does well:

  • Easy handling of missing data (represented as NaN) in floating point as well as non-floating point data

  • Size mutability: columns can be inserted and deleted from DataFrame and higher dimensional objects

  • Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let Series, DataFrame, etc. automatically align the data for you in computations

  • Powerful, flexible group by functionality to perform split-apply-combine operations on data sets, for both aggregating and transforming data

  • Make it easy to convert ragged, differently-indexed data in other Python and NumPy data structures into DataFrame objects

  • Intelligent label-based slicing, fancy indexing, and subsetting of large data sets

  • Intuitive merging and joining data sets

  • Flexible reshaping and pivoting of data sets

  • Hierarchical labeling of axes (possible to have multiple labels per tick)

  • Robust IO tools for loading data from flat files (CSV and delimited), Excel files, databases, and saving / loading data from the ultrafast HDF5 format

  • Time series-specific functionality: date range generation and frequency conversion, moving window statistics, moving window linear regressions, date shifting and lagging, etc.

Many of these principles are here to address the shortcomings frequently experienced using other languages / scientific research environments. For data scientists, working with data is typically divided into multiple stages: munging and cleaning data, analyzing / modeling it, then organizing the results of the analysis into a form suitable for plotting or tabular display. pandas is the ideal tool for all of these tasks.

Note

Windows binaries built against NumPy 1.8.1

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

pandas-0.14.1.zip (7.5 MB view details)

Uploaded Source

pandas-0.14.1.tar.gz (6.7 MB view details)

Uploaded Source

Built Distributions

pandas-0.14.1.win-amd64-py3.4.exe (3.4 MB view details)

Uploaded Source

pandas-0.14.1.win-amd64-py3.3.exe (3.4 MB view details)

Uploaded Source

pandas-0.14.1.win-amd64-py3.2.exe (3.4 MB view details)

Uploaded Source

pandas-0.14.1.win-amd64-py2.7.exe (3.5 MB view details)

Uploaded Source

pandas-0.14.1.win-amd64-py2.6.exe (3.5 MB view details)

Uploaded Source

pandas-0.14.1.win32-py3.4.exe (3.2 MB view details)

Uploaded Source

pandas-0.14.1.win32-py3.3.exe (3.2 MB view details)

Uploaded Source

pandas-0.14.1.win32-py3.2.exe (3.2 MB view details)

Uploaded Source

pandas-0.14.1.win32-py2.7.exe (3.2 MB view details)

Uploaded Source

pandas-0.14.1.win32-py2.6.exe (3.2 MB view details)

Uploaded Source

pandas-0.14.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (6.0 MB view details)

Uploaded CPython 3.4m macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pandas-0.14.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (6.0 MB view details)

Uploaded CPython 3.3m macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pandas-0.14.1-cp32-cp32m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.2m macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pandas-0.14.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (6.0 MB view details)

Uploaded CPython 2.7 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file pandas-0.14.1.zip.

File metadata

  • Download URL: pandas-0.14.1.zip
  • Upload date:
  • Size: 7.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pandas-0.14.1.zip
Algorithm Hash digest
SHA256 3daa2c38bbb32218ae914748c8cced926f3f4d3ed404d5791e6a43ee875aaee3
MD5 f634a6db924351328021fd28105da1d6
BLAKE2b-256 527797a5164c6352187b31519640740d14368f8ded0ea9ef5b0afe278d8342fc

See more details on using hashes here.

File details

Details for the file pandas-0.14.1.tar.gz.

File metadata

  • Download URL: pandas-0.14.1.tar.gz
  • Upload date:
  • Size: 6.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pandas-0.14.1.tar.gz
Algorithm Hash digest
SHA256 8d36f69e63f4c36999d142d60e476a6359c77069ad0ed1e4aa16a7005884dd21
MD5 393dd8f35411e4022177aa64b2da46f4
BLAKE2b-256 a1f76ef5328e027d69f8d7b8f943680df43a6243349fdbb69440134f3c819afc

See more details on using hashes here.

File details

Details for the file pandas-0.14.1.win-amd64-py3.4.exe.

File metadata

File hashes

Hashes for pandas-0.14.1.win-amd64-py3.4.exe
Algorithm Hash digest
SHA256 7b6cf2c2b99c3741347a6aad54326450cd10a5c06db893591abb841ecf046e58
MD5 4504375400c5ad68bd639c9094d75eaf
BLAKE2b-256 8c9fbccf6451f24982846c68fa8774a2579d7c7d97ae85ba3b8254d028a5a40a

See more details on using hashes here.

File details

Details for the file pandas-0.14.1.win-amd64-py3.3.exe.

File metadata

File hashes

Hashes for pandas-0.14.1.win-amd64-py3.3.exe
Algorithm Hash digest
SHA256 e3a49fe38d0d40ee073e0d9fad1fba85b1fc0a29f752906c88488209d210ce44
MD5 abaa0f96eb5d630a9272962f423661b8
BLAKE2b-256 bd33763f301b3766c2d2afb4ba1c218bd6d650912d6a6811a083bdba9822fd16

See more details on using hashes here.

File details

Details for the file pandas-0.14.1.win-amd64-py3.2.exe.

File metadata

File hashes

Hashes for pandas-0.14.1.win-amd64-py3.2.exe
Algorithm Hash digest
SHA256 dfd27a20115d71754a2b228d211e672db27acd6b36396d0f44303aedb815342a
MD5 b360b93125c676c21061ea3810f72431
BLAKE2b-256 ea68750e067f32a890e835383eec5f948204d246c23540bb973fc685440c59e1

See more details on using hashes here.

File details

Details for the file pandas-0.14.1.win-amd64-py2.7.exe.

File metadata

File hashes

Hashes for pandas-0.14.1.win-amd64-py2.7.exe
Algorithm Hash digest
SHA256 f435b1343f993999235de611098baf411a5b68200d4d6b81d57ea2e9de23c6a0
MD5 85e953506c57d2a7d56603465f4d7587
BLAKE2b-256 e18e1dcb9c3d59813917c2ab7e9875e64023f35ac9cd0a58d46a261b07c9876c

See more details on using hashes here.

File details

Details for the file pandas-0.14.1.win-amd64-py2.6.exe.

File metadata

File hashes

Hashes for pandas-0.14.1.win-amd64-py2.6.exe
Algorithm Hash digest
SHA256 6afde01d19d53cc9417f1d751c5d92158f32f288cb3eefc6973c11c38a326146
MD5 04f214277690cb56c57fb06a8e1c4ef4
BLAKE2b-256 90a3a60b07a6097153aba1061d24873765f1410a69729f90939ed71214c351c0

See more details on using hashes here.

File details

Details for the file pandas-0.14.1.win32-py3.4.exe.

File metadata

File hashes

Hashes for pandas-0.14.1.win32-py3.4.exe
Algorithm Hash digest
SHA256 0e77ee794c25ee4937f83c3a102b0600b3f94f7a45fa387c82b572488194bab7
MD5 53a4e085bc8cf1a8771b082028b0b441
BLAKE2b-256 118efa9584ee9bba3a7691c26e03c737304466d12375ff115b4385fe71bc5d57

See more details on using hashes here.

File details

Details for the file pandas-0.14.1.win32-py3.3.exe.

File metadata

File hashes

Hashes for pandas-0.14.1.win32-py3.3.exe
Algorithm Hash digest
SHA256 a3bb3098c2728beef240a56d2c6becbef67178e28e0d89355860ffb7e7e614f5
MD5 d3bf6f5cb96d003a6f7c3a572abccc4f
BLAKE2b-256 735e20e9c0fd1d78a9f00f1b01f2dc17c6460b8fe810e31248b43d0bee932863

See more details on using hashes here.

File details

Details for the file pandas-0.14.1.win32-py3.2.exe.

File metadata

File hashes

Hashes for pandas-0.14.1.win32-py3.2.exe
Algorithm Hash digest
SHA256 82bcefc23f56ea3ed66f1a983a39d1c4f5d28c7ad775a3389d552eade3586bbf
MD5 079fcb96214b9ad13bfd9315c3540138
BLAKE2b-256 fc311711eb86283c72a4a16f8c782a93fc56a37b523f9d21bcb0149e2cc3b2ee

See more details on using hashes here.

File details

Details for the file pandas-0.14.1.win32-py2.7.exe.

File metadata

File hashes

Hashes for pandas-0.14.1.win32-py2.7.exe
Algorithm Hash digest
SHA256 d19b9b444ee237d612a6a216b25512cad17c37a998e0bff59b16a3d7645017f5
MD5 0ee8d33744cea1092aa94b51e73675e5
BLAKE2b-256 79fe50087a47bce55c2886a400f8e27275db0cd6b493ad511b1f413ce08fde90

See more details on using hashes here.

File details

Details for the file pandas-0.14.1.win32-py2.6.exe.

File metadata

File hashes

Hashes for pandas-0.14.1.win32-py2.6.exe
Algorithm Hash digest
SHA256 20c2a938beb54abe51dd97f176f427027ea54afd45d4dde7c75de5b1c1d64d2c
MD5 3106f662c7476deba236ee364c2ced17
BLAKE2b-256 4f93e317df7ee95380dc02fff1578b587aeb9765f47497a6f5807665e09f2f68

See more details on using hashes here.

File details

Details for the file pandas-0.14.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.14.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9752d2ee05f82ad39f4b1031269f1c64f818a56770e6847f540bdc85207fcb36
MD5 2a263cac02124eaa5bc0d650362608c9
BLAKE2b-256 3275f3bf3f7aceb8cc6dd81921b9e86aab22cd208e58c3d1c50779cbf035a776

See more details on using hashes here.

File details

Details for the file pandas-0.14.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.14.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fcd770ed400317423320447f318e32934b76f7a6d6f535e6ec8ed0a3ed6cce37
MD5 e14b361a95b403d6440259e2f54a863e
BLAKE2b-256 b1089a137835f11eb1597ee73b77c867b2bdc8fb42a0ded4e3585a32c72ac252

See more details on using hashes here.

File details

Details for the file pandas-0.14.1-cp32-cp32m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.14.1-cp32-cp32m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 85af67895c10c1dfc0836ae350c30c2ead5ae8e89a4399ca9a44bdbfa3eaaaef
MD5 1d31252963fd60cdaf89819df724c5ae
BLAKE2b-256 bca29c5b7941012f268f579d19073f5e9f72a58424a58f0a4ea2ef0487ed6099

See more details on using hashes here.

File details

Details for the file pandas-0.14.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.14.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d64b33e74be27d50a595612b7a9d405d2813b7523498f76cf7c5813f781f434e
MD5 881489cd8c9050ffed549ca5f8b88a3c
BLAKE2b-256 3769ff4bd51065a6916c0a217ce67f16ee40bdd4fcdcebcd45a124695f0b7c0d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page