Skip to main content

Powerful data structures for data analysis, time series, and statistics

Project description



pandas: powerful Python data analysis toolkit

PyPI Latest Release Conda Latest Release DOI Package Status License Azure Build Status Coverage Downloads Gitter Powered by NumFOCUS Code style: black Imports: isort

What is it?

pandas is a Python package that provides fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis / manipulation tool available in any language. It is already well on its way towards this goal.

Main Features

Here are just a few of the things that pandas does well:

  • Easy handling of missing data (represented as NaN, NA, or NaT) in floating point as well as non-floating point data
  • Size mutability: columns can be inserted and deleted from DataFrame and higher dimensional objects
  • Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let Series, DataFrame, etc. automatically align the data for you in computations
  • Powerful, flexible group by functionality to perform split-apply-combine operations on data sets, for both aggregating and transforming data
  • Make it easy to convert ragged, differently-indexed data in other Python and NumPy data structures into DataFrame objects
  • Intelligent label-based slicing, fancy indexing, and subsetting of large data sets
  • Intuitive merging and joining data sets
  • Flexible reshaping and pivoting of data sets
  • Hierarchical labeling of axes (possible to have multiple labels per tick)
  • Robust IO tools for loading data from flat files (CSV and delimited), Excel files, databases, and saving/loading data from the ultrafast HDF5 format
  • Time series-specific functionality: date range generation and frequency conversion, moving window statistics, date shifting and lagging

Where to get it

The source code is currently hosted on GitHub at: https://github.com/pandas-dev/pandas

Binary installers for the latest released version are available at the Python Package Index (PyPI) and on Conda.

# conda
conda install pandas
# or PyPI
pip install pandas

Dependencies

See the full installation instructions for minimum supported versions of required, recommended and optional dependencies.

Installation from sources

To install pandas from source you need Cython in addition to the normal dependencies above. Cython can be installed from PyPI:

pip install cython

In the pandas directory (same one where you found this file after cloning the git repo), execute:

python setup.py install

or for installing in development mode:

python -m pip install -e . --no-build-isolation --no-use-pep517

If you have make, you can also use make develop to run the same command.

or alternatively

python setup.py develop

See the full instructions for installing from source.

License

BSD 3

Documentation

The official documentation is hosted on PyData.org: https://pandas.pydata.org/pandas-docs/stable

Background

Work on pandas started at AQR (a quantitative hedge fund) in 2008 and has been under active development since then.

Getting Help

For usage questions, the best place to go to is StackOverflow. Further, general questions and discussions can also take place on the pydata mailing list.

Discussion and Development

Most development discussions take place on GitHub in this repo. Further, the pandas-dev mailing list can also be used for specialized discussions or design issues, and a Gitter channel is available for quick development related questions.

Contributing to pandas Open Source Helpers

All contributions, bug reports, bug fixes, documentation improvements, enhancements, and ideas are welcome.

A detailed overview on how to contribute can be found in the contributing guide.

If you are simply looking to start working with the pandas codebase, navigate to the GitHub "issues" tab and start looking through interesting issues. There are a number of issues listed under Docs and good first issue where you could start out.

You can also triage issues which may include reproducing bug reports, or asking for vital information such as version numbers or reproduction instructions. If you would like to start triaging issues, one easy way to get started is to subscribe to pandas on CodeTriage.

Or maybe through using pandas you have an idea of your own or are looking for something in the documentation and thinking ‘this can be improved’...you can do something about it!

Feel free to ask questions on the mailing list or on Gitter.

As contributors and maintainers to this project, you are expected to abide by pandas' code of conduct. More information can be found at: Contributor Code of Conduct

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandas-1.4.1.tar.gz (4.9 MB view details)

Uploaded Source

Built Distributions

pandas-1.4.1-cp310-cp310-win_amd64.whl (10.6 MB view details)

Uploaded CPython 3.10Windows x86-64

pandas-1.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.7 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

pandas-1.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.0 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

pandas-1.4.1-cp310-cp310-macosx_11_0_arm64.whl (10.5 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

pandas-1.4.1-cp310-cp310-macosx_10_9_x86_64.whl (11.5 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

pandas-1.4.1-cp310-cp310-macosx_10_9_universal2.whl (17.9 MB view details)

Uploaded CPython 3.10macOS 10.9+ universal2 (ARM64, x86-64)

pandas-1.4.1-cp39-cp39-win_amd64.whl (10.5 MB view details)

Uploaded CPython 3.9Windows x86-64

pandas-1.4.1-cp39-cp39-win32.whl (9.4 MB view details)

Uploaded CPython 3.9Windows x86

pandas-1.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.7 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

pandas-1.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.0 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

pandas-1.4.1-cp39-cp39-macosx_11_0_arm64.whl (10.5 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

pandas-1.4.1-cp39-cp39-macosx_10_9_x86_64.whl (11.5 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

pandas-1.4.1-cp39-cp39-macosx_10_9_universal2.whl (17.8 MB view details)

Uploaded CPython 3.9macOS 10.9+ universal2 (ARM64, x86-64)

pandas-1.4.1-cp38-cp38-win_amd64.whl (10.6 MB view details)

Uploaded CPython 3.8Windows x86-64

pandas-1.4.1-cp38-cp38-win32.whl (9.4 MB view details)

Uploaded CPython 3.8Windows x86

pandas-1.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.7 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

pandas-1.4.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.0 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

pandas-1.4.1-cp38-cp38-macosx_11_0_arm64.whl (10.3 MB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

pandas-1.4.1-cp38-cp38-macosx_10_9_x86_64.whl (11.4 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

pandas-1.4.1-cp38-cp38-macosx_10_9_universal2.whl (17.5 MB view details)

Uploaded CPython 3.8macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file pandas-1.4.1.tar.gz.

File metadata

  • Download URL: pandas-1.4.1.tar.gz
  • Upload date:
  • Size: 4.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for pandas-1.4.1.tar.gz
Algorithm Hash digest
SHA256 8db93ec98ac7cb5f8ac1420c10f5e3c43533153f253fe7fb6d891cf5aa2b80d2
MD5 c0a13228f1fba8e1735e06e0d80fb884
BLAKE2b-256 c4ebcfa96ba42695b3c28d4864a796d492f188471dd536df7e5e5e0c54b629a6

See more details on using hashes here.

File details

Details for the file pandas-1.4.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pandas-1.4.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 10.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for pandas-1.4.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c614001129b2a5add5e3677c3a213a9e6fd376204cb8d17c04e84ff7dfc02a73
MD5 abb8a77dd8a7bf2f37f703d92a22ef01
BLAKE2b-256 f0b54d33934763d73ccc4c81ac7cc9d1c2ae88e50dc528ae7f149b3feec6cf4c

See more details on using hashes here.

File details

Details for the file pandas-1.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pandas-1.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e6a7bbbb7950063bfc942f8794bc3e31697c020a14f1cd8905fc1d28ec674a01
MD5 7adc11c97f3ca1e5b179b1a95a401d78
BLAKE2b-256 780183e8de29c9e4c6877a6856c4c49858122b1f762a6fd556bbc373fda877a9

See more details on using hashes here.

File details

Details for the file pandas-1.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pandas-1.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 508c99debccd15790d526ce6b1624b97a5e1e4ca5b871319fb0ebfd46b8f4dad
MD5 32c5a0c53b2e24d22dec8e52f0d62014
BLAKE2b-256 73cf6555c6612994f1e721b7530ed3a3e4e982cf18658c79d85dd777faf427e3

See more details on using hashes here.

File details

Details for the file pandas-1.4.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: pandas-1.4.1-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 10.5 MB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for pandas-1.4.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 96e9ece5759f9b47ae43794b6359bbc54805d76e573b161ae770c1ea59393106
MD5 2acd8666fac826fc28660f6386c84ecc
BLAKE2b-256 0daf1611ea91d12ce20b709cc1f26f851f7244a2420c972bd7954fa924559664

See more details on using hashes here.

File details

Details for the file pandas-1.4.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pandas-1.4.1-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 11.5 MB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for pandas-1.4.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0259cd11e7e6125aaea3af823b80444f3adad6149ff4c97fef760093598b3e34
MD5 bd173bb9bddbc857b35202534c839f7c
BLAKE2b-256 aa4c20648141347547c0f1d253e66419beb7380ab4f2a25642ac84a75e69f74b

See more details on using hashes here.

File details

Details for the file pandas-1.4.1-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pandas-1.4.1-cp310-cp310-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 17.9 MB
  • Tags: CPython 3.10, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for pandas-1.4.1-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 3dfb32ed50122fe8c5e7f2b8d97387edd742cc78f9ec36f007ee126cd3720907
MD5 85d284fbff9f56f7a088a7b099b4330e
BLAKE2b-256 dc5c3900123ed2023449ec3e1e02405513f348c158627db12ab2644e0157769e

See more details on using hashes here.

File details

Details for the file pandas-1.4.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pandas-1.4.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 10.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for pandas-1.4.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3129a35d9dad1d80c234dd78f8f03141b914395d23f97cf92a366dcd19f8f8bf
MD5 25f0a010abe062407706ba952a837872
BLAKE2b-256 3b8173396f8b40cb02887116af3b45f34c6a3a434682a1026686ad48d51900eb

See more details on using hashes here.

File details

Details for the file pandas-1.4.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: pandas-1.4.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for pandas-1.4.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 1d85d5f6be66dfd6d1d8d13b9535e342a2214260f1852654b19fa4d7b8d1218b
MD5 61b1f644b04ca727820a6ebeb16b186b
BLAKE2b-256 e15a3a368c7728a055832bcdbc254f77cde0163550c06209acba155f224c6016

See more details on using hashes here.

File details

Details for the file pandas-1.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: pandas-1.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 11.7 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for pandas-1.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2e5a7a1e0ecaac652326af627a3eca84886da9e667d68286866d4e33f6547caf
MD5 4f9ae4f4df6fefd172838683173c8a05
BLAKE2b-256 8e2f192279e11738420be0fe0907d8751181f77c28ca59b6c29fac1f0d34e2e3

See more details on using hashes here.

File details

Details for the file pandas-1.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pandas-1.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7ea47ba1d6f359680130bd29af497333be6110de8f4c35b9211eec5a5a9630fa
MD5 d3837bcca526258ec2f19798ad0a2510
BLAKE2b-256 8a6d61f1db0dca7f4d68c15f0b1979b5db57a98e66d27bffa94fa658af28aa91

See more details on using hashes here.

File details

Details for the file pandas-1.4.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: pandas-1.4.1-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 10.5 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for pandas-1.4.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 19f7c632436b1b4f84615c3b127bbd7bc603db95e3d4332ed259dc815c9aaa26
MD5 7e8ed2cc53f42f4961f6f6ec60f42b33
BLAKE2b-256 e4516d8677c992da6db7216f2a9e1c7c362fd1d5675d2dc3d43d5c1c7c63aa3a

See more details on using hashes here.

File details

Details for the file pandas-1.4.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pandas-1.4.1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 11.5 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for pandas-1.4.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0b1a13f647e4209ed7dbb5da3497891d0045da9785327530ab696417ef478f84
MD5 894677a000a565953104d956573717d1
BLAKE2b-256 ad65870f1e6c916528430153b99e2bcaca5e6938c2ac884e46b2577c011cb855

See more details on using hashes here.

File details

Details for the file pandas-1.4.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pandas-1.4.1-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 17.8 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for pandas-1.4.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f02e85e6d832be37d7f16cf6ac8bb26b519ace3e5f3235564a91c7f658ab2a43
MD5 5d82fb044ee4e2ac98ea8ba8faa74505
BLAKE2b-256 2e0eb3969274544fc653a269874ed589dc3b5a7a9820916245f48fff51e27c8a

See more details on using hashes here.

File details

Details for the file pandas-1.4.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pandas-1.4.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 10.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for pandas-1.4.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 1b384516dbb4e6aae30e3464c2e77c563da5980440fbdfbd0968e3942f8f9d70
MD5 175428203266c5d8bef66a8c18b091e2
BLAKE2b-256 d54d234e4eee95ed83278f3b7c5663f63bca4eec0d2aa4c5f023131acb48d358

See more details on using hashes here.

File details

Details for the file pandas-1.4.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: pandas-1.4.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for pandas-1.4.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 04dd15d9db538470900c851498e532ef28d4e56bfe72c9523acb32042de43dfb
MD5 7c452d568569402560dcf1547c6ba8bc
BLAKE2b-256 dce92c9d2d41e00be095aefb0aac5326707e03649ff6355d57d26477ab869150

See more details on using hashes here.

File details

Details for the file pandas-1.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: pandas-1.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 11.7 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for pandas-1.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6105af6533f8b63a43ea9f08a2ede04e8f43e49daef0209ab0d30352bcf08bee
MD5 a2d7f2fd50f84d17122d6705667b6b9c
BLAKE2b-256 20535ad34b9d52f94e1ae8a4a410ead791e74e03d200ec64d9c3f61d83915ec4

See more details on using hashes here.

File details

Details for the file pandas-1.4.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pandas-1.4.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 358b0bc98a5ff067132d23bf7a2242ee95db9ea5b7bbc401cf79205f11502fd3
MD5 be28f38bce296acbd91759da56e8870c
BLAKE2b-256 dfea56b2cfcba397d6aa8ab891fb6a7e2a07f0f09b06310a9ec96c436b755e93

See more details on using hashes here.

File details

Details for the file pandas-1.4.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: pandas-1.4.1-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 10.3 MB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for pandas-1.4.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6d6ad1da00c7cc7d8dd1559a6ba59ba3973be6b15722d49738b2be0977eb8a0c
MD5 fadf062fce674ba7383a0aefccc0ea50
BLAKE2b-256 a8f73a675621f892beb1933a69e6d7e4a97e002811efa05776be114499c10e74

See more details on using hashes here.

File details

Details for the file pandas-1.4.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pandas-1.4.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 11.4 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for pandas-1.4.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bbb15ad79050e8b8d39ec40dd96a30cd09b886a2ae8848d0df1abba4d5502a67
MD5 53bfdddbf7fadf57efd0ac172cc46faa
BLAKE2b-256 053e6c96177de3ae4060f8cab1b5e11ff96ed148f85a954ae85c148d9f1147aa

See more details on using hashes here.

File details

Details for the file pandas-1.4.1-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pandas-1.4.1-cp38-cp38-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 17.5 MB
  • Tags: CPython 3.8, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for pandas-1.4.1-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 4e1176f45981c8ccc8161bc036916c004ca51037a7ed73f2d2a9857e6dbe654f
MD5 fff027f7defcf77f892da2846257974b
BLAKE2b-256 1b367bd05593e423bc2fdbfbb24ec0f8f678300126e49359e6ae5f91512ba318

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page