Skip to main content

Powerful data structures for data analysis, time series,and statistics

Project description

pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with structured (tabular, multidimensional, potentially heterogeneous) and time series data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis / manipulation tool available in any language. It is already well on its way toward this goal.

pandas is well suited for many different kinds of data:

  • Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet

  • Ordered and unordered (not necessarily fixed-frequency) time series data.

  • Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels

  • Any other form of observational / statistical data sets. The data actually need not be labeled at all to be placed into a pandas data structure

The two primary data structures of pandas, Series (1-dimensional) and DataFrame (2-dimensional), handle the vast majority of typical use cases in finance, statistics, social science, and many areas of engineering. For R users, DataFrame provides everything that R’s data.frame provides and much more. pandas is built on top of NumPy and is intended to integrate well within a scientific computing environment with many other 3rd party libraries.

Here are just a few of the things that pandas does well:

  • Easy handling of missing data (represented as NaN) in floating point as well as non-floating point data

  • Size mutability: columns can be inserted and deleted from DataFrame and higher dimensional objects

  • Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let Series, DataFrame, etc. automatically align the data for you in computations

  • Powerful, flexible group by functionality to perform split-apply-combine operations on data sets, for both aggregating and transforming data

  • Make it easy to convert ragged, differently-indexed data in other Python and NumPy data structures into DataFrame objects

  • Intelligent label-based slicing, fancy indexing, and subsetting of large data sets

  • Intuitive merging and joining data sets

  • Flexible reshaping and pivoting of data sets

  • Hierarchical labeling of axes (possible to have multiple labels per tick)

  • Robust IO tools for loading data from flat files (CSV and delimited), Excel files, databases, and saving / loading data from the ultrafast HDF5 format

  • Time series-specific functionality: date range generation and frequency conversion, moving window statistics, moving window linear regressions, date shifting and lagging, etc.

Many of these principles are here to address the shortcomings frequently experienced using other languages / scientific research environments. For data scientists, working with data is typically divided into multiple stages: munging and cleaning data, analyzing / modeling it, then organizing the results of the analysis into a form suitable for plotting or tabular display. pandas is the ideal tool for all of these tasks.

Note

Windows binaries built against NumPy 1.8.1

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandas-0.20.1.tar.gz (10.3 MB view details)

Uploaded Source

Built Distributions

pandas-0.20.1-cp36-cp36m-win_amd64.whl (8.2 MB view details)

Uploaded CPython 3.6mWindows x86-64

pandas-0.20.1-cp36-cp36m-win32.whl (7.5 MB view details)

Uploaded CPython 3.6mWindows x86

pandas-0.20.1-cp36-cp36m-manylinux1_x86_64.whl (24.4 MB view details)

Uploaded CPython 3.6m

pandas-0.20.1-cp36-cp36m-manylinux1_i686.whl (22.9 MB view details)

Uploaded CPython 3.6m

pandas-0.20.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (14.8 MB view details)

Uploaded CPython 3.6mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

pandas-0.20.1-cp35-cp35m-win_amd64.whl (8.2 MB view details)

Uploaded CPython 3.5mWindows x86-64

pandas-0.20.1-cp35-cp35m-win32.whl (7.4 MB view details)

Uploaded CPython 3.5mWindows x86

pandas-0.20.1-cp35-cp35m-manylinux1_x86_64.whl (24.0 MB view details)

Uploaded CPython 3.5m

pandas-0.20.1-cp35-cp35m-manylinux1_i686.whl (22.4 MB view details)

Uploaded CPython 3.5m

pandas-0.20.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (14.6 MB view details)

Uploaded CPython 3.5mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

pandas-0.20.1-cp34-cp34m-win_amd64.whl (8.0 MB view details)

Uploaded CPython 3.4mWindows x86-64

pandas-0.20.1-cp34-cp34m-win32.whl (7.5 MB view details)

Uploaded CPython 3.4mWindows x86

pandas-0.20.1-cp34-cp34m-manylinux1_x86_64.whl (24.3 MB view details)

Uploaded CPython 3.4m

pandas-0.20.1-cp34-cp34m-manylinux1_i686.whl (22.7 MB view details)

Uploaded CPython 3.4m

pandas-0.20.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (14.7 MB view details)

Uploaded CPython 3.4mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

pandas-0.20.1-cp27-cp27mu-manylinux1_x86_64.whl (22.3 MB view details)

Uploaded CPython 2.7mu

pandas-0.20.1-cp27-cp27mu-manylinux1_i686.whl (20.6 MB view details)

Uploaded CPython 2.7mu

pandas-0.20.1-cp27-cp27m-win_amd64.whl (8.3 MB view details)

Uploaded CPython 2.7mWindows x86-64

pandas-0.20.1-cp27-cp27m-win32.whl (7.6 MB view details)

Uploaded CPython 2.7mWindows x86

pandas-0.20.1-cp27-cp27m-manylinux1_x86_64.whl (22.3 MB view details)

Uploaded CPython 2.7m

pandas-0.20.1-cp27-cp27m-manylinux1_i686.whl (20.6 MB view details)

Uploaded CPython 2.7m

pandas-0.20.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (15.0 MB view details)

Uploaded CPython 2.7mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

File details

Details for the file pandas-0.20.1.tar.gz.

File metadata

  • Download URL: pandas-0.20.1.tar.gz
  • Upload date:
  • Size: 10.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pandas-0.20.1.tar.gz
Algorithm Hash digest
SHA256 42707365577ef69f7c9c168ddcf045df2957595a9ee71bc13c7997eecb96b190
MD5 0b4b377994461068ea7751dedfa1cb4a
BLAKE2b-256 34fd0cb98ea4df08c82af3de93da5b9f79d573c6ecc05098905f9cd6b0bece51

See more details on using hashes here.

File details

Details for the file pandas-0.20.1-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.20.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 ec99f55faa245a9376cb3005817e98cd05a37a2c65229e22ae8e103a6d992e0b
MD5 01ad0cd6bb0133b14b76008adba77979
BLAKE2b-256 f7c9f769bb950cb9908dcbcd17a9896ce5b8102f293f854f5df244db8f85dcfe

See more details on using hashes here.

File details

Details for the file pandas-0.20.1-cp36-cp36m-win32.whl.

File metadata

File hashes

Hashes for pandas-0.20.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 a004a03e968652e9d60a99a4dcccff41f8993bed99f82a5a1770cb57a3305ef7
MD5 bc50affcf3a75995a00f96d69e6dd5ba
BLAKE2b-256 3319e5edbebd4b4ba09488c05697e49cb7f1ea4eb408a3e5421432d27c64d8e8

See more details on using hashes here.

File details

Details for the file pandas-0.20.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.20.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 89c0fe4a88a2d7a6f535aff1d354c16fa08f3c3313e5d8a18e797150a4d85849
MD5 2a247b9a40216c8d3a1ac7b8433461dc
BLAKE2b-256 4773179f1fa847e774af50041ec26da6d704d726b3a1291225a26afd060f8e1c

See more details on using hashes here.

File details

Details for the file pandas-0.20.1-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for pandas-0.20.1-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 935f49f11841cfd387b4a29f97e94ca3500011fee9230c249197a52b705ebc25
MD5 beb6a489c180b67101a9a1d073b1249d
BLAKE2b-256 ffd7f2933d86834915b4027f3b8c86ec013259c79e5dfe5121946d9cd4d98c3d

See more details on using hashes here.

File details

Details for the file pandas-0.20.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.20.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 155010c35f5922ddfb3ff2cead22eb81f2a194b75afdddef533c2b0c6c21f7b9
MD5 1bc5328ce1d96075d838af476787e96b
BLAKE2b-256 4214586ebf9f2f8a19004fdc202453bcfedf647908389901adec2cf141ccb4e0

See more details on using hashes here.

File details

Details for the file pandas-0.20.1-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.20.1-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 6388aa3e97f6a0bcd64de9a5f9a2cca93d00ed29c556f1a7f8a1f4e4ad19d376
MD5 e63caf0a12c4b89fb07bcafa255ff14b
BLAKE2b-256 9bc8b86c3092683d07fa9a018b0be542a4b08cd5f360fc4d7cda954a613a7a9c

See more details on using hashes here.

File details

Details for the file pandas-0.20.1-cp35-cp35m-win32.whl.

File metadata

File hashes

Hashes for pandas-0.20.1-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 e3cd757d486d055ef2ed3ca79c3cdf00d3fe78ab832ff60af48f0d0c951781e4
MD5 4c29633e84b36fc5868e0a28643a2bbf
BLAKE2b-256 d3ae606fb98fbc1b2f2e03c0b663b238b9c2e008780c78913fe6f84aa9b64c68

See more details on using hashes here.

File details

Details for the file pandas-0.20.1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.20.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9bad4f5ab0cc0c3c0b3b5210a9c6204c23277f3318ba1334b4e0ee816756f3ac
MD5 0cbde4ed18f4c1970f421c123126eab5
BLAKE2b-256 614d2cb1fc302e8836c7639b85183b59748e026e7bd6dfcfba647ad65888b6d3

See more details on using hashes here.

File details

Details for the file pandas-0.20.1-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for pandas-0.20.1-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 c0512894853a4414dfdf85f09ae16d1f11f3688fd0c6ae51c5ab5b82cd55f390
MD5 437b79ead4e07a60e76b6186b9098858
BLAKE2b-256 60174332fc2607bc785b11c2f385180a79318d126053bb747c5132b458e2d9ed

See more details on using hashes here.

File details

Details for the file pandas-0.20.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.20.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 7853d3503941a5fdd4243a899421f2b5c681196686d6d39f18f3d7264fc6ca94
MD5 f9a1c7fa98fed9700f57427522715b63
BLAKE2b-256 7a9f9bcc3956fa84a31de1e866396385a4681e4f1562fd9594270f607c51a95a

See more details on using hashes here.

File details

Details for the file pandas-0.20.1-cp34-cp34m-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.20.1-cp34-cp34m-win_amd64.whl
Algorithm Hash digest
SHA256 de8dd5edd97858b113ad64e45a7839673e588216194e6bd7e262416a196a6e10
MD5 9ee93ed9eb71e602f8c9f93b5fe06cc8
BLAKE2b-256 91d6480fbd51dc8a1aa4f9b03cbec1a90f7b5da6543ac561bdcf307e605f6763

See more details on using hashes here.

File details

Details for the file pandas-0.20.1-cp34-cp34m-win32.whl.

File metadata

File hashes

Hashes for pandas-0.20.1-cp34-cp34m-win32.whl
Algorithm Hash digest
SHA256 a9c5af985f2253a9249932f488ab8e29f5d8756f32eca85f24d098461770e15b
MD5 d72cbd1ddfcb9878a76eea15f6e33c2e
BLAKE2b-256 f097467c4cd006c5c7f3f9a8f61c046c660e5acb4c0118c627eaa96f161c2648

See more details on using hashes here.

File details

Details for the file pandas-0.20.1-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.20.1-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4ae4c080b68f98417548a08e67b7b881117a9caeff52d232033f9f2726ad2c29
MD5 dd0d0859d87842df831d94d35cee099d
BLAKE2b-256 b14c7e562a9694f7ebc0fb4ee811cd85e8afc9312247b0ee5b86243b2e3a3a8b

See more details on using hashes here.

File details

Details for the file pandas-0.20.1-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for pandas-0.20.1-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 05ff7cfddbff0a613c8861c0d277cfdf95c2a58db9730f9007d788ca88d3361d
MD5 71cfe50f6a6395592d16cd59f5040672
BLAKE2b-256 a6d9921cce63fc5837bfa354e2b2a044d51e1e4b9286562e83bbbeb6e15fe582

See more details on using hashes here.

File details

Details for the file pandas-0.20.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.20.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 abf0f394cfaa0ad81f324647384ca102c6904d69e532546d67019a579f243e67
MD5 80d2549b14f32c7b431adc79d64a39b6
BLAKE2b-256 65b034101ba6788e0cdd91c5a0904c4d8ea2af49535f1599daf06d161733aa80

See more details on using hashes here.

File details

Details for the file pandas-0.20.1-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.20.1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1f622896c896bf52340d18d029098bc59f0887144f88b7bb97163602f4e582b6
MD5 e09a18b2d8f923005ef7fda220919f87
BLAKE2b-256 9c586d1c670a9040c1862b9a6b65e3f97743ceef8afccba716b2f8d962d7fc94

See more details on using hashes here.

File details

Details for the file pandas-0.20.1-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for pandas-0.20.1-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 ca310ec0352c3e890717387421a07e868ce1b8897f8793c4f651169689cae85e
MD5 c496f8fa212572128dd97141e481a64b
BLAKE2b-256 12d5f5ed0416b917d5e22552d8c5ed67286a7fd31fa77a89ad560f674bf3beaf

See more details on using hashes here.

File details

Details for the file pandas-0.20.1-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.20.1-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 3760669da09487cf021ebe99d91c75520e49d68bb3be8534783a8771228a3b0b
MD5 fcdb9e725b537b76d2876f55887e0386
BLAKE2b-256 dabada23d123110faef19ad8e6620a0de9f2bb6d17eebddde8a0765102f4cca5

See more details on using hashes here.

File details

Details for the file pandas-0.20.1-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for pandas-0.20.1-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 7fc28ce2e6acca2c87d22150a31bf439dd950dde24ad6eaecb6edf9fafccaca0
MD5 bf0438d41e6960d047b275bf4ac3c40e
BLAKE2b-256 c1c6e0919d9d466a5aa8a1fac11f12beb75b5087a4259377002d4b0c28818c05

See more details on using hashes here.

File details

Details for the file pandas-0.20.1-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.20.1-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b56183de1f7fb85f7f6487d95153a6b4eb65c67ce429c3cb809035821af3314f
MD5 5bff5d8f042bb2dfc5c0afbc65b97eca
BLAKE2b-256 99489188105135776e32901b03cc31f432916e6b1bcdb240d860f03ad1febb2b

See more details on using hashes here.

File details

Details for the file pandas-0.20.1-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for pandas-0.20.1-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 daf404ccb04a7a73e09f117687c1c9062d39a60dd113d11bc654a28c09e2e82c
MD5 29918724a60f8d325863c5bc300a2fed
BLAKE2b-256 785545d71aa9ebf5070e035785d38ca3a718782172e63720545b3378afdbdd8d

See more details on using hashes here.

File details

Details for the file pandas-0.20.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.20.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 ca671eb9072114e78b160e1725b52e7be4b07576c19734ef7cdbd28a87e4a639
MD5 1f39694f2d61ba63f3ef93486cf9f0c5
BLAKE2b-256 f1cb9ef37f854d0172852b06462d07d2fdbbd20d82eee1c4706a05d6b7282dc3

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page