Skip to main content

Powerful data structures for data analysis, time series,and statistics

Project description

pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with structured (tabular, multidimensional, potentially heterogeneous) and time series data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis / manipulation tool available in any language. It is already well on its way toward this goal.

pandas is well suited for many different kinds of data:

  • Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet

  • Ordered and unordered (not necessarily fixed-frequency) time series data.

  • Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels

  • Any other form of observational / statistical data sets. The data actually need not be labeled at all to be placed into a pandas data structure

The two primary data structures of pandas, Series (1-dimensional) and DataFrame (2-dimensional), handle the vast majority of typical use cases in finance, statistics, social science, and many areas of engineering. For R users, DataFrame provides everything that R’s data.frame provides and much more. pandas is built on top of NumPy and is intended to integrate well within a scientific computing environment with many other 3rd party libraries.

Here are just a few of the things that pandas does well:

  • Easy handling of missing data (represented as NaN) in floating point as well as non-floating point data

  • Size mutability: columns can be inserted and deleted from DataFrame and higher dimensional objects

  • Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let Series, DataFrame, etc. automatically align the data for you in computations

  • Powerful, flexible group by functionality to perform split-apply-combine operations on data sets, for both aggregating and transforming data

  • Make it easy to convert ragged, differently-indexed data in other Python and NumPy data structures into DataFrame objects

  • Intelligent label-based slicing, fancy indexing, and subsetting of large data sets

  • Intuitive merging and joining data sets

  • Flexible reshaping and pivoting of data sets

  • Hierarchical labeling of axes (possible to have multiple labels per tick)

  • Robust IO tools for loading data from flat files (CSV and delimited), Excel files, databases, and saving / loading data from the ultrafast HDF5 format

  • Time series-specific functionality: date range generation and frequency conversion, moving window statistics, moving window linear regressions, date shifting and lagging, etc.

Many of these principles are here to address the shortcomings frequently experienced using other languages / scientific research environments. For data scientists, working with data is typically divided into multiple stages: munging and cleaning data, analyzing / modeling it, then organizing the results of the analysis into a form suitable for plotting or tabular display. pandas is the ideal tool for all of these tasks.

Note

Windows binaries built against NumPy 1.8.1

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandas-0.22.0.tar.gz (11.3 MB view details)

Uploaded Source

Built Distributions

pandas-0.22.0-cp36-cp36m-win_amd64.whl (9.1 MB view details)

Uploaded CPython 3.6m Windows x86-64

pandas-0.22.0-cp36-cp36m-win32.whl (8.2 MB view details)

Uploaded CPython 3.6m Windows x86

pandas-0.22.0-cp36-cp36m-manylinux1_x86_64.whl (26.2 MB view details)

Uploaded CPython 3.6m

pandas-0.22.0-cp36-cp36m-manylinux1_i686.whl (24.4 MB view details)

Uploaded CPython 3.6m

pandas-0.22.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (14.9 MB view details)

Uploaded CPython 3.6m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

pandas-0.22.0-cp35-cp35m-win_amd64.whl (9.0 MB view details)

Uploaded CPython 3.5m Windows x86-64

pandas-0.22.0-cp35-cp35m-win32.whl (8.2 MB view details)

Uploaded CPython 3.5m Windows x86

pandas-0.22.0-cp35-cp35m-manylinux1_x86_64.whl (25.7 MB view details)

Uploaded CPython 3.5m

pandas-0.22.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (14.9 MB view details)

Uploaded CPython 3.5m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

pandas-0.22.0-cp27-cp27mu-manylinux1_x86_64.whl (24.3 MB view details)

Uploaded CPython 2.7mu

pandas-0.22.0-cp27-cp27mu-manylinux1_i686.whl (22.5 MB view details)

Uploaded CPython 2.7mu

pandas-0.22.0-cp27-cp27m-win_amd64.whl (9.1 MB view details)

Uploaded CPython 2.7m Windows x86-64

pandas-0.22.0-cp27-cp27m-win32.whl (8.4 MB view details)

Uploaded CPython 2.7m Windows x86

pandas-0.22.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (15.5 MB view details)

Uploaded CPython 2.7m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

File details

Details for the file pandas-0.22.0.tar.gz.

File metadata

  • Download URL: pandas-0.22.0.tar.gz
  • Upload date:
  • Size: 11.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pandas-0.22.0.tar.gz
Algorithm Hash digest
SHA256 44a94091dd71f05922eec661638ec1a35f26d573c119aa2fad964f10a2880e6c
MD5 c7a2757b607748255f3270221ac61d59
BLAKE2b-256 0801803834bc8a4e708aedebb133095a88a4dad9f45bbaf5ad777d2bea543c7e

See more details on using hashes here.

File details

Details for the file pandas-0.22.0-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.22.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 587a9816cc663c958fcff7907c553b73fe196604f990bc98e1b71ebf07e45b44
MD5 063b3c0b8f0b2c02f9d9a1b27535fb69
BLAKE2b-256 003a3ab358d91d3e35fd81ba074d7496df15f8dc737831ac5fb3fa58c18d29c3

See more details on using hashes here.

File details

Details for the file pandas-0.22.0-cp36-cp36m-win32.whl.

File metadata

File hashes

Hashes for pandas-0.22.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 97c8223d42d43d86ca359a57b4702ca0529c6553e83d736e93a5699951f0f8db
MD5 6da86ca0b53e9f5bb8b7ad42b5f1f8dd
BLAKE2b-256 006589b3bdf8889be9cca85f1676be6870b430613d718585b8b92c2de8f91eb2

See more details on using hashes here.

File details

Details for the file pandas-0.22.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.22.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c372db80a5bcb143c9cb254d50f902772c3b093a4f965275197ec2d2184b1e61
MD5 58f3a6713845f1c3358e743829664179
BLAKE2b-256 dac60936bc5814b429fddb5d6252566fe73a3e40372e6ceaf87de3dec1326f28

See more details on using hashes here.

File details

Details for the file pandas-0.22.0-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for pandas-0.22.0-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 c2cd884794924687edbaad40d18ac984054d247bb877890932c4d41e3c3aba31
MD5 6984231216a4c494da6d8eb483b757a6
BLAKE2b-256 35a44f719d6b35a271838fa3826404b08092fc04f1cc04aa274b21855f68d4df

See more details on using hashes here.

File details

Details for the file pandas-0.22.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.22.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 af0dbac881f6f87acd325415adea0ce8cccf28f5d4ad7a54b6a1e176e2f7bf70
MD5 d970654da3fe695e0fb1e1bb7d05835d
BLAKE2b-256 31b438aa707d65f0e051abac7845280557919f4be77a8b5b1bd7e42ecd90ca6b

See more details on using hashes here.

File details

Details for the file pandas-0.22.0-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.22.0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 66403162c8b45325a995493bdd78ad4d8be085e527d721dbfa773d56fbba9c88
MD5 8611ae804b679dba24467a14b5b870ab
BLAKE2b-256 793906ce96c84772460a864a9f6e7c11c98561d8901a9853ffe758c3d2842c68

See more details on using hashes here.

File details

Details for the file pandas-0.22.0-cp35-cp35m-win32.whl.

File metadata

File hashes

Hashes for pandas-0.22.0-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 244ae0b9e998cfa88452a49b20e29bf582cc7c0e69093876d505aec4f8e1c7fe
MD5 3e5099c6cb082578c81ea1a315947acd
BLAKE2b-256 beae3eacbdfaf2c47ba4a7eff5ce4e1a7d5f79d87be67d1cb186c238f3118245

See more details on using hashes here.

File details

Details for the file pandas-0.22.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.22.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 052a66f58783a59ea38fdfee25de083b107baa81fdbe38fabd169d0f9efce2bf
MD5 578a3d709adf9f4a9211ddd5ce99632d
BLAKE2b-256 990a37930bbee7a06bb5ce7e12f7970b29a17a49605d0b08a72dee7ab76135bb

See more details on using hashes here.

File details

Details for the file pandas-0.22.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.22.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 2907f3fe91ca2119ac3c38de6891bbbc83333bfe0d98309768fee28de563ee7a
MD5 ab00febe545ad5b31ac0363a20126e72
BLAKE2b-256 dae864832fc4107f249f0ca1596f0914a40e9cef490569b3d972a59fc786a360

See more details on using hashes here.

File details

Details for the file pandas-0.22.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.22.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 68b121d13177f5128a4c118bb4f73ba40df28292c038389961aa55ea5a996427
MD5 61c6e0dbbdcee2254208759a7e775ad6
BLAKE2b-256 6bb576538d8a202f8c368d30c18892d33664d1a3b2c078af8513ee5b5d172629

See more details on using hashes here.

File details

Details for the file pandas-0.22.0-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for pandas-0.22.0-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 12f2a19d0b0adf31170d98d0e8bcbc59add0965a9b0c65d39e0665400491c0c5
MD5 4bd14d7681be3579080997b587951517
BLAKE2b-256 b645e4ee3dbb916fe85e8276823b976cc4fd2583a270f7a32be4151f2fd1feb0

See more details on using hashes here.

File details

Details for the file pandas-0.22.0-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.22.0-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 02541a4fdd31315f213a5c8e18708abad719ee03eda05f603c4fe973e9b9d770
MD5 412547adbfecc79dd7dac50f9cab04e3
BLAKE2b-256 107b5b29a9601e322c8a94c15894216bce14dad9cbac933abebce271dbcc5b9a

See more details on using hashes here.

File details

Details for the file pandas-0.22.0-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for pandas-0.22.0-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 06efae5c00b9f4c6e6d3fe1eb52e590ff0ea8e5cb58032c724e04d31c540de53
MD5 d21cd8248c5450dbfd1d8fc81e47800a
BLAKE2b-256 eb20928330f7fecc3042c0bf0f445a3be112ba78a232a738d75092b6bad5d3b3

See more details on using hashes here.

File details

Details for the file pandas-0.22.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.22.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 68ac484e857dcbbd07ea7c6f516cc67f7f143f5313d9bc661470e7f473528882
MD5 a5ae53c4b51ad31f2344fc113776a9a9
BLAKE2b-256 8262e9058dc7f4d3be74d1111c14bc69a6edb8aeefbd4f6974f151d9d724fe04

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page