Skip to main content

Powerful data structures for data analysis, time series,and statistics

Project description

pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with structured (tabular, multidimensional, potentially heterogeneous) and time series data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis / manipulation tool available in any language. It is already well on its way toward this goal.

pandas is well suited for many different kinds of data:

  • Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet

  • Ordered and unordered (not necessarily fixed-frequency) time series data.

  • Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels

  • Any other form of observational / statistical data sets. The data actually need not be labeled at all to be placed into a pandas data structure

The two primary data structures of pandas, Series (1-dimensional) and DataFrame (2-dimensional), handle the vast majority of typical use cases in finance, statistics, social science, and many areas of engineering. For R users, DataFrame provides everything that R’s data.frame provides and much more. pandas is built on top of NumPy and is intended to integrate well within a scientific computing environment with many other 3rd party libraries.

Here are just a few of the things that pandas does well:

  • Easy handling of missing data (represented as NaN) in floating point as well as non-floating point data

  • Size mutability: columns can be inserted and deleted from DataFrame and higher dimensional objects

  • Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let Series, DataFrame, etc. automatically align the data for you in computations

  • Powerful, flexible group by functionality to perform split-apply-combine operations on data sets, for both aggregating and transforming data

  • Make it easy to convert ragged, differently-indexed data in other Python and NumPy data structures into DataFrame objects

  • Intelligent label-based slicing, fancy indexing, and subsetting of large data sets

  • Intuitive merging and joining data sets

  • Flexible reshaping and pivoting of data sets

  • Hierarchical labeling of axes (possible to have multiple labels per tick)

  • Robust IO tools for loading data from flat files (CSV and delimited), Excel files, databases, and saving / loading data from the ultrafast HDF5 format

  • Time series-specific functionality: date range generation and frequency conversion, moving window statistics, moving window linear regressions, date shifting and lagging, etc.

Many of these principles are here to address the shortcomings frequently experienced using other languages / scientific research environments. For data scientists, working with data is typically divided into multiple stages: munging and cleaning data, analyzing / modeling it, then organizing the results of the analysis into a form suitable for plotting or tabular display. pandas is the ideal tool for all of these tasks.

Note

Windows binaries built against NumPy 1.8.1

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandas-0.20.3.tar.gz (10.4 MB view details)

Uploaded Source

Built Distributions

pandas-0.20.3-cp36-cp36m-win_amd64.whl (8.3 MB view details)

Uploaded CPython 3.6mWindows x86-64

pandas-0.20.3-cp36-cp36m-win32.whl (7.5 MB view details)

Uploaded CPython 3.6mWindows x86

pandas-0.20.3-cp36-cp36m-manylinux1_x86_64.whl (24.5 MB view details)

Uploaded CPython 3.6m

pandas-0.20.3-cp36-cp36m-manylinux1_i686.whl (23.0 MB view details)

Uploaded CPython 3.6m

pandas-0.20.3-cp36-cp36m-macosx_10_12_x86_64.whl (9.3 MB view details)

Uploaded CPython 3.6mmacOS 10.12+ x86-64

pandas-0.20.3-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (14.8 MB view details)

Uploaded CPython 3.6mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

pandas-0.20.3-cp35-cp35m-win_amd64.whl (8.2 MB view details)

Uploaded CPython 3.5mWindows x86-64

pandas-0.20.3-cp35-cp35m-win32.whl (7.5 MB view details)

Uploaded CPython 3.5mWindows x86

pandas-0.20.3-cp35-cp35m-manylinux1_x86_64.whl (24.0 MB view details)

Uploaded CPython 3.5m

pandas-0.20.3-cp35-cp35m-manylinux1_i686.whl (22.5 MB view details)

Uploaded CPython 3.5m

pandas-0.20.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (14.7 MB view details)

Uploaded CPython 3.5mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

pandas-0.20.3-cp34-cp34m-win_amd64.whl (8.1 MB view details)

Uploaded CPython 3.4mWindows x86-64

pandas-0.20.3-cp34-cp34m-win32.whl (7.5 MB view details)

Uploaded CPython 3.4mWindows x86

pandas-0.20.3-cp34-cp34m-manylinux1_x86_64.whl (24.4 MB view details)

Uploaded CPython 3.4m

pandas-0.20.3-cp34-cp34m-manylinux1_i686.whl (22.7 MB view details)

Uploaded CPython 3.4m

pandas-0.20.3-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (14.7 MB view details)

Uploaded CPython 3.4mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

pandas-0.20.3-cp27-cp27mu-manylinux1_x86_64.whl (22.4 MB view details)

Uploaded CPython 2.7mu

pandas-0.20.3-cp27-cp27mu-manylinux1_i686.whl (20.7 MB view details)

Uploaded CPython 2.7mu

pandas-0.20.3-cp27-cp27m-win_amd64.whl (8.3 MB view details)

Uploaded CPython 2.7mWindows x86-64

pandas-0.20.3-cp27-cp27m-win32.whl (7.6 MB view details)

Uploaded CPython 2.7mWindows x86

pandas-0.20.3-cp27-cp27m-manylinux1_x86_64.whl (22.3 MB view details)

Uploaded CPython 2.7m

pandas-0.20.3-cp27-cp27m-manylinux1_i686.whl (20.7 MB view details)

Uploaded CPython 2.7m

pandas-0.20.3-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (15.0 MB view details)

Uploaded CPython 2.7mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

File details

Details for the file pandas-0.20.3.tar.gz.

File metadata

  • Download URL: pandas-0.20.3.tar.gz
  • Upload date:
  • Size: 10.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pandas-0.20.3.tar.gz
Algorithm Hash digest
SHA256 a777e07633d83d546c55706420179551c8e01075b53c497dcf8ae4036766bc66
MD5 4df858f28b4bf4fa07d9fbb7f2568173
BLAKE2b-256 eeaa90c06f249cf4408fa75135ad0df7d64c09cf74c9870733862491ed5f3a50

See more details on using hashes here.

File details

Details for the file pandas-0.20.3-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.20.3-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 39fda572ec544836bdc913b36f6efdbd453116c6fea8df24764cf10d86ba0ad6
MD5 46198cbb455d7ef21b64ec14728c16ab
BLAKE2b-256 17aca2ddae60e78d123c6bd04ded9e24839d4ac61b39d50e3ae9e99ef12fd9ff

See more details on using hashes here.

File details

Details for the file pandas-0.20.3-cp36-cp36m-win32.whl.

File metadata

File hashes

Hashes for pandas-0.20.3-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 0811ede1b9b338169803e04e665f8127283995223d296a2e61eca99d14f0a9a7
MD5 135563c640b6d3b587ead2f594566a18
BLAKE2b-256 f5196cc60ddcb9b141d803b8dfeb661e5289f517dbc44424a42bf1e622b2d222

See more details on using hashes here.

File details

Details for the file pandas-0.20.3-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.20.3-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a53ab088ab3848a4140476e438e4ba41054f802ef432a188c5d849e41c7b2a9c
MD5 e1ce44fd70c090b083ddc09e75b252ed
BLAKE2b-256 fe6f5733658857dffb998afa2120027171c263384ada0487a969e5ecd5bf9ac9

See more details on using hashes here.

File details

Details for the file pandas-0.20.3-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for pandas-0.20.3-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 39732ac0ca2963eb78da570c16fb9dbf5c7f84409974ca15f32876091cb533a2
MD5 efe9d1dc6636fb0c3f48f2819d59cd69
BLAKE2b-256 91f3f5268fe395471a0e9686821477af5297655f437782cccbc43e41480a2bd8

See more details on using hashes here.

File details

Details for the file pandas-0.20.3-cp36-cp36m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.20.3-cp36-cp36m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 d8635f161aadd23262ab94e0c2962dd6c727505a3c7e987e33f0172ab40a2f3a
MD5 be998001d111cc1415f9b1256f85497a
BLAKE2b-256 ecaeaea4479ab435bcbade8abdfef45ed4afba2f7e300f930b32334f05b9819b

See more details on using hashes here.

File details

Details for the file pandas-0.20.3-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.20.3-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 d0e85e1d8c46758ab6a07467438b6a625e60532c5aab46b6bc570a3b8243c697
MD5 4ae2e0148ab7b5129a8b3d3237653228
BLAKE2b-256 e341387958a6945a14f4b24f57e1624cc70c9d88db3cfaa6863cc92be5ee4e42

See more details on using hashes here.

File details

Details for the file pandas-0.20.3-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.20.3-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 25219ad2b5a203bfd6f84ab179594536eb00ef91b0c6615715450788f2306c80
MD5 4665e2b08cf12880f05bf564349a5cca
BLAKE2b-256 97abc18f67da9b0dedf311d9907220008a9c2fae537f8c79f113aeea67c631f0

See more details on using hashes here.

File details

Details for the file pandas-0.20.3-cp35-cp35m-win32.whl.

File metadata

File hashes

Hashes for pandas-0.20.3-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 6ea455587b3b2a73288f00476a5b20862052d69d287cda7aadff570a48972cbf
MD5 4464231341e3bb393436c3958eb22e14
BLAKE2b-256 568260662107a7cdf336651c0350fe64cb2f1a0fdfe94f20b2accb05f4829335

See more details on using hashes here.

File details

Details for the file pandas-0.20.3-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.20.3-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 26e9a0f4299f39816b469c83b2f3a04dcaa2727bde93469959ba63574f16e15a
MD5 a0fdf9f6d772ed8168ec6ce555ac7aba
BLAKE2b-256 482daa82467d46b26fda36a6f20d9f4b1391b9181fbb83096eb84a6e930a9f09

See more details on using hashes here.

File details

Details for the file pandas-0.20.3-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for pandas-0.20.3-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 09ab1d66f6db0e6bb74c15813fcfbd6f0f2a7a78c8824d56e285360833cd225c
MD5 36c49e39104d7aa47b045f5d82ac2402
BLAKE2b-256 fc6bd2ec1ec034fda94d2e9d045eaad3bbf96ef983ab7c87ec5daac78aa4ae5d

See more details on using hashes here.

File details

Details for the file pandas-0.20.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.20.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 eea812e11da3f53fce9f8474a3ab42124e0ae4a359d9d1677d676cb3dfacb217
MD5 a0c18cb2eea24ffd56e46c6e149c0d26
BLAKE2b-256 1a99253f7096b12481941623205fc81e67aaf86c1e0d17026d286b53da799fd2

See more details on using hashes here.

File details

Details for the file pandas-0.20.3-cp34-cp34m-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.20.3-cp34-cp34m-win_amd64.whl
Algorithm Hash digest
SHA256 353608eeeac4d6666390998dd37689ba26920ec08c007fbe46fef98a4be5224b
MD5 f4d38a96584c68b917215bdfa4c67d24
BLAKE2b-256 43c1560f19bb09bb403ef9272e7f565d8c8bf31c58535af8d03d754bf16a20b5

See more details on using hashes here.

File details

Details for the file pandas-0.20.3-cp34-cp34m-win32.whl.

File metadata

File hashes

Hashes for pandas-0.20.3-cp34-cp34m-win32.whl
Algorithm Hash digest
SHA256 70463d4e04a39fb530461a1e50c6068b14b668ccf756f5111599198e3db47cb8
MD5 71e52f5dba23720f697d50bd268c0aa2
BLAKE2b-256 ac645d19505cab19bea543974cf6f925dd26ff4cdd68cec5553e9417ecd5775d

See more details on using hashes here.

File details

Details for the file pandas-0.20.3-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.20.3-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 cbaa99186712e697cb4775c625e7924cf17200a01bad441e6135c3a932f51d11
MD5 1744cc60311eb4ef12cdd50094b5b435
BLAKE2b-256 aacb43ce8e01cf980f2381aa85ad6d0aff5e62c64d498b94a379e19f3a011e1a

See more details on using hashes here.

File details

Details for the file pandas-0.20.3-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for pandas-0.20.3-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 bac73f33a578ee40cc96b7512bf8596cdc534892336e0cf4f8dde80eed7c916d
MD5 1e0b69c353d44fdb7f1cf96e75570081
BLAKE2b-256 c09ab43c0923b1076fd506e17a45b3de31c482a0a3ed8dd043cd1585f9b24b85

See more details on using hashes here.

File details

Details for the file pandas-0.20.3-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.20.3-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 19eff29057c05e498e66b6c373860db0520adf2601647c7147022861a5be7dac
MD5 fad226c208fcbac6f3b7d1f728894ad9
BLAKE2b-256 4179deb79357582a7591761be186112fd5cb29e024bffceafffa44b364c5e319

See more details on using hashes here.

File details

Details for the file pandas-0.20.3-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.20.3-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 58b56065ac2298cdc6d12c69a34dc0d2315bb3827ca014a227b7412c5ee4204f
MD5 e3329a594aed639e6540195a883ba982
BLAKE2b-256 7761222973b3373d127386124ce715dc9680111b74f2255d13384fcc4a6ff463

See more details on using hashes here.

File details

Details for the file pandas-0.20.3-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for pandas-0.20.3-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 d8b636ee0a992551b5bfe5bb8518db3e56301ce21394993668c72fe2f23efaf0
MD5 086cc26c215f01d8beffce4bc200c659
BLAKE2b-256 5ea1191c2c685a38bc7109b1c8d5c1f7085e51c5363aa62665702fd79f1fe7aa

See more details on using hashes here.

File details

Details for the file pandas-0.20.3-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.20.3-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 9677e26f40050c2262391df02674ae277d1cf137986b6611de4b4c86ddc62c08
MD5 ba927f9afaccb6e017e5e89f64aad5a0
BLAKE2b-256 f75b8e5c5976ea9ee32734b93aa5c562b471388e40645580366ec005c0b62a5e

See more details on using hashes here.

File details

Details for the file pandas-0.20.3-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for pandas-0.20.3-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 2595f720809a494c36e42d778bcb4bcc5aca4afd6a2dc783b927b73e1f7351ed
MD5 d0534e6c272b667be3106017dd47cdd3
BLAKE2b-256 41c056bf3fab2a3c3d7e8fdca720153c827cab389307d3bcab9b263fbdff88ca

See more details on using hashes here.

File details

Details for the file pandas-0.20.3-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.20.3-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 908e09bf7951162aa639a8414d511e2b7774922c6e14fb8af2ed67e5767b867b
MD5 5aa38d7177e6a2090c39e2a9a7186f6e
BLAKE2b-256 b431bbd2c915aad67c7cb572b7c6ca8f645fcb112064ef6774436d4f65acd5a1

See more details on using hashes here.

File details

Details for the file pandas-0.20.3-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for pandas-0.20.3-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 fcc312dd529c91e0fdc074cb466367e856ee337f727aa739a77df49f647c8011
MD5 b3af1248d8c0495b6ecab1856bb0da17
BLAKE2b-256 0dd7c3940e9a9c15105ddb164e084d7b935b51864550cbbed999870a44671475

See more details on using hashes here.

File details

Details for the file pandas-0.20.3-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.20.3-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 aebedc41d9ffd5da31b28aa6d32c70a904432d0259eee4ff0da494395d7e4ed6
MD5 6da8dd6ae64a542cfa3deb5c1d872733
BLAKE2b-256 def7b5b4ca7eaed26c17a1951f1f972c53d090a170b9786fb0c7cc1ae4ab9edb

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page