Skip to main content

Powerful data structures for data analysis, time series,and statistics

Project description

pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with structured (tabular, multidimensional, potentially heterogeneous) and time series data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis / manipulation tool available in any language. It is already well on its way toward this goal.

pandas is well suited for many different kinds of data:

  • Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet

  • Ordered and unordered (not necessarily fixed-frequency) time series data.

  • Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels

  • Any other form of observational / statistical data sets. The data actually need not be labeled at all to be placed into a pandas data structure

The two primary data structures of pandas, Series (1-dimensional) and DataFrame (2-dimensional), handle the vast majority of typical use cases in finance, statistics, social science, and many areas of engineering. For R users, DataFrame provides everything that R’s data.frame provides and much more. pandas is built on top of NumPy and is intended to integrate well within a scientific computing environment with many other 3rd party libraries.

Here are just a few of the things that pandas does well:

  • Easy handling of missing data (represented as NaN) in floating point as well as non-floating point data

  • Size mutability: columns can be inserted and deleted from DataFrame and higher dimensional objects

  • Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let Series, DataFrame, etc. automatically align the data for you in computations

  • Powerful, flexible group by functionality to perform split-apply-combine operations on data sets, for both aggregating and transforming data

  • Make it easy to convert ragged, differently-indexed data in other Python and NumPy data structures into DataFrame objects

  • Intelligent label-based slicing, fancy indexing, and subsetting of large data sets

  • Intuitive merging and joining data sets

  • Flexible reshaping and pivoting of data sets

  • Hierarchical labeling of axes (possible to have multiple labels per tick)

  • Robust IO tools for loading data from flat files (CSV and delimited), Excel files, databases, and saving / loading data from the ultrafast HDF5 format

  • Time series-specific functionality: date range generation and frequency conversion, moving window statistics, moving window linear regressions, date shifting and lagging, etc.

Many of these principles are here to address the shortcomings frequently experienced using other languages / scientific research environments. For data scientists, working with data is typically divided into multiple stages: munging and cleaning data, analyzing / modeling it, then organizing the results of the analysis into a form suitable for plotting or tabular display. pandas is the ideal tool for all of these tasks.

Note

Windows binaries built against NumPy 1.8.1

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandas-0.21.0.tar.gz (11.3 MB view details)

Uploaded Source

Built Distributions

pandas-0.21.0-cp36-cp36m-win_amd64.whl (9.1 MB view details)

Uploaded CPython 3.6mWindows x86-64

pandas-0.21.0-cp36-cp36m-win32.whl (8.2 MB view details)

Uploaded CPython 3.6mWindows x86

pandas-0.21.0-cp36-cp36m-manylinux1_x86_64.whl (26.2 MB view details)

Uploaded CPython 3.6m

pandas-0.21.0-cp36-cp36m-manylinux1_i686.whl (24.3 MB view details)

Uploaded CPython 3.6m

pandas-0.21.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (15.8 MB view details)

Uploaded CPython 3.6mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

pandas-0.21.0-cp35-cp35m-win_amd64.whl (9.0 MB view details)

Uploaded CPython 3.5mWindows x86-64

pandas-0.21.0-cp35-cp35m-win32.whl (8.2 MB view details)

Uploaded CPython 3.5mWindows x86

pandas-0.21.0-cp35-cp35m-manylinux1_x86_64.whl (25.7 MB view details)

Uploaded CPython 3.5m

pandas-0.21.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (15.6 MB view details)

Uploaded CPython 3.5mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

pandas-0.21.0-cp34-cp34m-win_amd64.whl (8.8 MB view details)

Uploaded CPython 3.4mWindows x86-64

pandas-0.21.0-cp34-cp34m-win32.whl (8.3 MB view details)

Uploaded CPython 3.4mWindows x86

pandas-0.21.0-cp27-cp27mu-manylinux1_x86_64.whl (24.3 MB view details)

Uploaded CPython 2.7mu

pandas-0.21.0-cp27-cp27mu-manylinux1_i686.whl (22.4 MB view details)

Uploaded CPython 2.7mu

pandas-0.21.0-cp27-cp27m-win_amd64.whl (9.1 MB view details)

Uploaded CPython 2.7mWindows x86-64

pandas-0.21.0-cp27-cp27m-win32.whl (8.4 MB view details)

Uploaded CPython 2.7mWindows x86

pandas-0.21.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (16.7 MB view details)

Uploaded CPython 2.7mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

File details

Details for the file pandas-0.21.0.tar.gz.

File metadata

  • Download URL: pandas-0.21.0.tar.gz
  • Upload date:
  • Size: 11.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pandas-0.21.0.tar.gz
Algorithm Hash digest
SHA256 5cd5cb30e72eeaf202f0e5e180780b897570e889d2db328c689a5a263405c559
MD5 6f14884caaa87a0824b5e93fe032b904
BLAKE2b-256 844c622301f99725c6da76ae8079cb6b9091d9098098bd6b4eac47fb502b32f4

See more details on using hashes here.

File details

Details for the file pandas-0.21.0-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.21.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 9eb5659f0b1dda3c8922a2c5f5560864db8859c37cd1846a875f9d57eff9bbbf
MD5 ce8d22c65599ea32dbf20e2bc82e3258
BLAKE2b-256 4ea948951bfa4572aea7ccce30f9400b3f35554e9dcd2d503efe408b1c964c0b

See more details on using hashes here.

File details

Details for the file pandas-0.21.0-cp36-cp36m-win32.whl.

File metadata

File hashes

Hashes for pandas-0.21.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 0ce4e91be750bc9c87c5ffb19fa07c49fc53cccc2103b029d5783e2be2e33ee8
MD5 c29f1c1225a689029aee4b762ed46072
BLAKE2b-256 6c721614faf355fae87664354f52b8d31bff520b1ae01965e772f3511f2f1afe

See more details on using hashes here.

File details

Details for the file pandas-0.21.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.21.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 aaf5ad3fdae2787bac3f0a12e313e9ab5a38e4e35dd8c2110ccc3f6369e868bb
MD5 d5de1e82a7620151c8b6084c3740c3f7
BLAKE2b-256 9bb7d829de9794567443fbe230a666910d2c5ea3c28a6554f1246ab004583b82

See more details on using hashes here.

File details

Details for the file pandas-0.21.0-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for pandas-0.21.0-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 42d1d7a8e0e1c00efe5c561b3815f0d9f721b0eb4383c8a1dcaf51a449490d3f
MD5 6279f4d76973ed7d737ab10d8bb145b0
BLAKE2b-256 6b22a05b7b88b5dffc8d898d9d17e87a813fe5547f2afc83d2345d8a58be04c4

See more details on using hashes here.

File details

Details for the file pandas-0.21.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.21.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 1e4d28c22eab2249248c30cbd40e1da1dfde76b0b8238c3a00b2c2febe26502e
MD5 2f3c60d47917c342a60eab66742057f8
BLAKE2b-256 353c9a109bcf0ba88014a704bbf6f0f426bfad2aca9e951499bc25bea629f680

See more details on using hashes here.

File details

Details for the file pandas-0.21.0-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.21.0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 25eeaa3ef515e8b57b91d9b06d2118f13f72ba05d39b9cb27d508ae29086fc20
MD5 bcbd6bda7ee4ca7c8d14b45d2123dd98
BLAKE2b-256 9fdf6718044777d8a76532cb219a7604606e784bf630fe724a3fec2000ce31b1

See more details on using hashes here.

File details

Details for the file pandas-0.21.0-cp35-cp35m-win32.whl.

File metadata

File hashes

Hashes for pandas-0.21.0-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 39c14e05aa31ae9c7ad108440967bb3e3ea4f2502de04b7f028f9b6bbe843c56
MD5 cc8c841da39037040a8503d0f4e54130
BLAKE2b-256 81f694236ebf5b34131b8ad93d11380f650fd3295915a9ca774bd2619dc800ce

See more details on using hashes here.

File details

Details for the file pandas-0.21.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.21.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 318481d4129c753c2e3f89b4c5097de869778bd58bc2c197d5a37728b8731596
MD5 0df613f52802bbae766390204b24e585
BLAKE2b-256 8505e05bb5b117aae8a1cd5d8944db14d5706057aa45415d41f4749fa456182c

See more details on using hashes here.

File details

Details for the file pandas-0.21.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.21.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 1cc76558fa3b6eaa5bd1e6290862092eb49727151ae7a05a4c7691c4fecff65a
MD5 cd43a2daa30c0f0ade5ef29a7ba0ad24
BLAKE2b-256 69c20323c5bdb0d0b8b9e07dc96e81fb13155784a4b2d5cb1feaa110261e5ae3

See more details on using hashes here.

File details

Details for the file pandas-0.21.0-cp34-cp34m-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.21.0-cp34-cp34m-win_amd64.whl
Algorithm Hash digest
SHA256 b3ed1d71bdf08ab7702c2a9463f001845480f4c8a7d64af77a4cbfdadab6e625
MD5 20316e3c28bfc9f38a2d1f84f77899c8
BLAKE2b-256 f42d62969e67c7392f9f6a10f022b5fcb07f01882f7fcb33f728e126d2e4541a

See more details on using hashes here.

File details

Details for the file pandas-0.21.0-cp34-cp34m-win32.whl.

File metadata

File hashes

Hashes for pandas-0.21.0-cp34-cp34m-win32.whl
Algorithm Hash digest
SHA256 81c4f49575c6d5c394128180442ddbd370f495780763d4035e5ae6c14e3aa0ee
MD5 beb8f33d357ba46e9b129b79d3b873a1
BLAKE2b-256 85cc3578cce7cd949953d9bfecbdcd269f565334c60e8ff09184670373983acc

See more details on using hashes here.

File details

Details for the file pandas-0.21.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.21.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 3df408ae6fa7393355306f495c38971ba4c48500b497079013c50a0131248b17
MD5 848381d4b8af5d77e42e6db93c816c96
BLAKE2b-256 6c0c800a49b126c1c987ce9f9456979ed970bad38794f5010c0e03d7b1f73932

See more details on using hashes here.

File details

Details for the file pandas-0.21.0-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for pandas-0.21.0-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 efbc55164e87d55feaa0c47e711b747d0e51129b4970bf2ac65b4d3d95d2c677
MD5 7ef25e339d34f635e5ad0ac3590c2e19
BLAKE2b-256 40a518104a25b0ebbecaeac59252a0eec7d18e704fd467863098914840f67625

See more details on using hashes here.

File details

Details for the file pandas-0.21.0-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.21.0-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 9218563fe44c7f58465707781b3ee64d8680c5e82625b128f0dbcf32f0e123fd
MD5 2fc0f75f626be9e4da17c0b69c53a31f
BLAKE2b-256 ff92afcf9e6e4338dd51c835d92319879bbbf5b24384db45b0794dfb2d719fb3

See more details on using hashes here.

File details

Details for the file pandas-0.21.0-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for pandas-0.21.0-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 92a4fc33cfb723f9544853e0e7e907efc8b0d4666f3bb5e8defbe9f354bcda94
MD5 92620da58d591a08173909e6da87b345
BLAKE2b-256 1e19a8e3e25b9a7e6b76f97b540c21a884bca2dc3145e215f56cab3ef965eead

See more details on using hashes here.

File details

Details for the file pandas-0.21.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.21.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 873a404581a2e7849d7ed8190cdcee70a3f60d1bd02403b66249bfd450b93e37
MD5 7893615021650de21a77fd27a7ce8860
BLAKE2b-256 d6bec52bf46ba8a1ee74465e601043c816465f628179e5510e9efc558bb3b422

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page