Skip to main content

Powerful data structures for data analysis, time series,and statistics

Project description

pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with structured (tabular, multidimensional, potentially heterogeneous) and time series data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis / manipulation tool available in any language. It is already well on its way toward this goal.

pandas is well suited for many different kinds of data:

  • Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet

  • Ordered and unordered (not necessarily fixed-frequency) time series data.

  • Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels

  • Any other form of observational / statistical data sets. The data actually need not be labeled at all to be placed into a pandas data structure

The two primary data structures of pandas, Series (1-dimensional) and DataFrame (2-dimensional), handle the vast majority of typical use cases in finance, statistics, social science, and many areas of engineering. For R users, DataFrame provides everything that R’s data.frame provides and much more. pandas is built on top of NumPy and is intended to integrate well within a scientific computing environment with many other 3rd party libraries.

Here are just a few of the things that pandas does well:

  • Easy handling of missing data (represented as NaN) in floating point as well as non-floating point data

  • Size mutability: columns can be inserted and deleted from DataFrame and higher dimensional objects

  • Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let Series, DataFrame, etc. automatically align the data for you in computations

  • Powerful, flexible group by functionality to perform split-apply-combine operations on data sets, for both aggregating and transforming data

  • Make it easy to convert ragged, differently-indexed data in other Python and NumPy data structures into DataFrame objects

  • Intelligent label-based slicing, fancy indexing, and subsetting of large data sets

  • Intuitive merging and joining data sets

  • Flexible reshaping and pivoting of data sets

  • Hierarchical labeling of axes (possible to have multiple labels per tick)

  • Robust IO tools for loading data from flat files (CSV and delimited), Excel files, databases, and saving / loading data from the ultrafast HDF5 format

  • Time series-specific functionality: date range generation and frequency conversion, moving window statistics, moving window linear regressions, date shifting and lagging, etc.

Many of these principles are here to address the shortcomings frequently experienced using other languages / scientific research environments. For data scientists, working with data is typically divided into multiple stages: munging and cleaning data, analyzing / modeling it, then organizing the results of the analysis into a form suitable for plotting or tabular display. pandas is the ideal tool for all of these tasks.

Note

Windows binaries built against NumPy 1.8.1

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandas-0.19.2.tar.gz (9.2 MB view details)

Uploaded Source

Built Distributions

pandas-0.19.2-cp36-cp36m-win_amd64.whl (7.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

pandas-0.19.2-cp36-cp36m-win32.whl (6.6 MB view details)

Uploaded CPython 3.6m Windows x86

pandas-0.19.2-cp36-cp36m-manylinux1_x86_64.whl (18.9 MB view details)

Uploaded CPython 3.6m

pandas-0.19.2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (11.8 MB view details)

Uploaded CPython 3.6m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

pandas-0.19.2-cp35-cp35m-win_amd64.whl (7.1 MB view details)

Uploaded CPython 3.5m Windows x86-64

pandas-0.19.2-cp35-cp35m-win32.whl (6.6 MB view details)

Uploaded CPython 3.5m Windows x86

pandas-0.19.2-cp35-cp35m-manylinux1_x86_64.whl (18.5 MB view details)

Uploaded CPython 3.5m

pandas-0.19.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (11.6 MB view details)

Uploaded CPython 3.5m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

pandas-0.19.2-cp34-cp34m-win_amd64.whl (7.1 MB view details)

Uploaded CPython 3.4m Windows x86-64

pandas-0.19.2-cp34-cp34m-win32.whl (6.7 MB view details)

Uploaded CPython 3.4m Windows x86

pandas-0.19.2-cp34-cp34m-manylinux1_x86_64.whl (18.7 MB view details)

Uploaded CPython 3.4m

pandas-0.19.2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (11.7 MB view details)

Uploaded CPython 3.4m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

pandas-0.19.2-cp27-cp27mu-manylinux1_x86_64.whl (17.2 MB view details)

Uploaded CPython 2.7mu

pandas-0.19.2-cp27-cp27m-win_amd64.whl (7.2 MB view details)

Uploaded CPython 2.7m Windows x86-64

pandas-0.19.2-cp27-cp27m-win32.whl (6.8 MB view details)

Uploaded CPython 2.7m Windows x86

pandas-0.19.2-cp27-cp27m-manylinux1_x86_64.whl (17.2 MB view details)

Uploaded CPython 2.7m

pandas-0.19.2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (11.9 MB view details)

Uploaded CPython 2.7m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

File details

Details for the file pandas-0.19.2.tar.gz.

File metadata

  • Download URL: pandas-0.19.2.tar.gz
  • Upload date:
  • Size: 9.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pandas-0.19.2.tar.gz
Algorithm Hash digest
SHA256 6f0f4f598c2b16746803c8bafef7c721c57e4844da752d36240c0acf97658014
MD5 26df3ef7cd5686fa284321f4f48b38cd
BLAKE2b-256 089d31ec596099f14528fc6ad39428248ac5360f0bb5205a3ee79a5d1cf260fb

See more details on using hashes here.

File details

Details for the file pandas-0.19.2-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.19.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 e740ddc6cafc2d9ae5bb8ff122e0509b5b2249f19b5dd123b375c09380f12064
MD5 59867ddf23ae1b66f196d48427541d1c
BLAKE2b-256 db1da8aa1c127b870e605d578fd466f5b63c04a2fa2a21e5bb9946be9a6e8ed5

See more details on using hashes here.

File details

Details for the file pandas-0.19.2-cp36-cp36m-win32.whl.

File metadata

File hashes

Hashes for pandas-0.19.2-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 092514870e4bc7843cbba32327805b1305d26d3cfa700afba88bc33c6093b836
MD5 386ff2821e0c2f68d29bfeaa2f582ed9
BLAKE2b-256 9e79b5878cc7d70e28b765bfa45d989225b9ce1b29a289f0c7328d1234ab91ef

See more details on using hashes here.

File details

Details for the file pandas-0.19.2-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.19.2-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 aa256d6c93885bebb93b56bc230115c8c279b65dc94e0d67086f159ab91b1f12
MD5 5c80e41325c21f15522fe6be56b7dd09
BLAKE2b-256 f133b455d0af521b76b1982eac1ed1c30c9e67f9885f54c3349aef0b0c547d85

See more details on using hashes here.

File details

Details for the file pandas-0.19.2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.19.2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 ea20a1d1aea4344173e31b45ae26c8261288a201e7ab438f9f4f69e41341b58d
MD5 ca25807f6343b2dacf51eb6bcb970e72
BLAKE2b-256 5fd6bbefbb8b46271fe30c3859937b395602ed7c586c42cd413ea9557950d5e9

See more details on using hashes here.

File details

Details for the file pandas-0.19.2-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.19.2-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 ace3dc64604cb291e7906f83c2f99c495afa13dfbdd51cf82d242004dbe84401
MD5 8c2cb80c1b4a5b6216a448def2cc8727
BLAKE2b-256 d9c90197da1728e813d37b8b38f795aac95ea0c334b75b365078b2b8476dcd11

See more details on using hashes here.

File details

Details for the file pandas-0.19.2-cp35-cp35m-win32.whl.

File metadata

File hashes

Hashes for pandas-0.19.2-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 60b235fbd26177aff3ff16408e4a8e52e922e5534bdd9df9c501cf919fecd260
MD5 e8de6d9b8aa3ac085aa0a91df15dd348
BLAKE2b-256 f9434974b5d2f2ea30e63644c1c3a9d553c61666b098931bef95aa103290a10a

See more details on using hashes here.

File details

Details for the file pandas-0.19.2-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.19.2-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f18c85f69025161b8528877b3501b2e5c3b8aa8d87a4a2357f4c08992b206d3a
MD5 3c829b9ab6a303afdab76c8150beb72b
BLAKE2b-256 d87f69354c4ab712acbdf37ece1b9dabdc1bbdb9e72e0c1abe308c9f8fc8303f

See more details on using hashes here.

File details

Details for the file pandas-0.19.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.19.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 a85d07962701184def927d82f216624737ff9f752f00384d3a8397cf5b52e2f8
MD5 8924c3ecc1d825e29b1a2480fdac99dd
BLAKE2b-256 10b308a787189501b049558f8baae6958b17a86f86eba409100330635b00a3c3

See more details on using hashes here.

File details

Details for the file pandas-0.19.2-cp34-cp34m-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.19.2-cp34-cp34m-win_amd64.whl
Algorithm Hash digest
SHA256 08a98b2ffd9214aea0999db7417102d1b2de45b64c4f50a5ed1a50c6c5c3b91b
MD5 f0442017aab81c35629b33bb913db8c6
BLAKE2b-256 fd3f78e1aee2846eb5f25a384269f5d14a2ff944505d42a48072d7814b784890

See more details on using hashes here.

File details

Details for the file pandas-0.19.2-cp34-cp34m-win32.whl.

File metadata

File hashes

Hashes for pandas-0.19.2-cp34-cp34m-win32.whl
Algorithm Hash digest
SHA256 ffd33b6013e969d6af2b7dd9393770856153f0507afcab0d66e82730509de43e
MD5 86867e6eb9266392ab9c5d57e3cb8575
BLAKE2b-256 16eede677d0a4d19b16c45ada8499f1479ced64b1e10ae34d5e37add9ec34d0d

See more details on using hashes here.

File details

Details for the file pandas-0.19.2-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.19.2-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a1aa1fb8b487bda388681dbd1438fa49655bf3f3a2f3e53101d2f65053d1f519
MD5 35f30393fc3651f83e4f781ab2ffcd21
BLAKE2b-256 cfed83fad322b7bb4b54a35a8011063c000a3b3fed58390ef76e94b4eca13481

See more details on using hashes here.

File details

Details for the file pandas-0.19.2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.19.2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 1667478d6093a15a0564c9eeb03b5ac91de94a147a6b5ad2272674f029e60cf7
MD5 8ab66b8f0623fcacafa0222e1585300a
BLAKE2b-256 a74fcd156dc47a3fecccc5508d4b95e9d314d41a6070b3ee9cdae160a51780ea

See more details on using hashes here.

File details

Details for the file pandas-0.19.2-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.19.2-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 873532a9a9afe614e7c42bfa0e72a0d97cce1c6f1e5e93f0340f139cf647aad2
MD5 19d91703ef503977713d9d04c784f51b
BLAKE2b-256 ffafada95f62d47b72dc0e351aef1b478a9d9d75324a2fddec0c341ce72a937c

See more details on using hashes here.

File details

Details for the file pandas-0.19.2-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.19.2-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 169873bd846bcfbdb387ae4fc0c324c629edcf92d495e8c498c7fa6b72fc517b
MD5 c73a2a99e65afb31da9c99522d97722b
BLAKE2b-256 35d110f6513220e62ca4f4e18696a09cb77621325d401a8459ef40394affcccc

See more details on using hashes here.

File details

Details for the file pandas-0.19.2-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for pandas-0.19.2-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 7189ea59e672766da26c81581bd12b91c371c386381b345f28ff19bca69ae5c5
MD5 46b9e84ce1f27fb4d98bb8a9d1111b08
BLAKE2b-256 e85115de10ceb433f485a31ac4397a8d56778bf50aea8672b5b96d93a6c7f1c0

See more details on using hashes here.

File details

Details for the file pandas-0.19.2-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.19.2-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 51fd63166e59ac43d350e7d14857ea4217844a61b20d4c9d089177fcf8614b75
MD5 4a8d2ceb36149c6cd3ad4768becf530f
BLAKE2b-256 725afd7322658996b4a87f3376b0cb34186f0852bf6688f34d6f4f78a8f019a1

See more details on using hashes here.

File details

Details for the file pandas-0.19.2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.19.2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 b7bf54959ef3ee82f55b169e3c1d3ba1818f14e876946056e8b8275e99ea69b0
MD5 a555a2beecf8ddc9cb38dcf69634dcce
BLAKE2b-256 32f1720a98aafe0717447f6d3cfa5696fbfbdc161779d90e6918841f516b2df4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page