Skip to main content

Fast, correct Python JSON library

Project description

orjson

orjson is a fast, correct JSON library for Python. It benchmarks as the fastest Python library for JSON and is more correct than the standard json library or third-party libraries.

Its serialization performance is 2.5x to 9.5x the nearest other library and 4x to 12x the standard library. Its deserialization performance is 1.2x to 1.3x the nearest other library and 1.4x to 2x the standard library.

It differs in behavior from other Python JSON libraries in supporting datetimes, not supporting subclasses without a default hook, serializing UTF-8 to bytes rather than escaped ASCII (e.g., "好" rather than "\\u597d") by default, having strict UTF-8 conformance, having strict JSON conformance on NaN/Infinity/-Infinity, having an option for strict JSON conformance on 53-bit integers, not supporting pretty printing, and not supporting all standard library options.

orjson supports CPython 3.5, 3.6, 3.7, and 3.8. It distributes wheels for Linux, macOS, and Windows. The manylinux1 wheel differs from PEP 513 in requiring glibc 2.18, released 2013, or later. orjson does not currently support PyPy.

orjson is licensed under both the Apache 2.0 and MIT licenses. The repository and issue tracker is github.com/ijl/orjson, and patches may be submitted there.

Usage

Install

To install a wheel from PyPI:

pip install --upgrade orjson

To build from source requires Rust on the nightly channel. Package a wheel from a PEP 517 source distribution using pip:

pip wheel --no-binary=orjson orjson

There are no runtime dependencies other than libc. orjson is compatible with systems using glibc earlier than 2.18 if compiled on such a system. Tooling does not currently support musl libc.

Serialize

def dumps(__obj: Any, default: Optional[Callable[[Any], Any]] = ..., option: Optional[int] = ...) -> bytes: ...

dumps() serializes Python objects to JSON.

It natively serializes str, dict, list, tuple, int, float, bool, typing.TypedDict, datetime.datetime, datetime.date, datetime.time, and None instances. It supports arbitrary types through default. It does not serialize subclasses of supported types natively, but default may be used.

It accepts options via an option keyword argument. These include:

  • orjson.OPT_STRICT_INTEGER for enforcing a 53-bit limit on integers. The limit is otherwise 64 bits, the same as the Python standard library.
  • orjson.OPT_NAIVE_UTC for assuming datetime.datetime objects without a tzinfo are UTC.

To specify multiple options, mask them together, e.g., option=orjson.OPT_STRICT_INTEGER | orjson.OPT_NAIVE_UTC.

It raises JSONEncodeError on an unsupported type. This exception message describes the invalid object.

It raises JSONEncodeError on a str that contains invalid UTF-8.

It raises JSONEncodeError on an integer that exceeds 64 bits by default or, with OPT_STRICT_INTEGER, 53 bits.

It raises JSONEncodeError if a dict has a key of a type other than str.

It raises JSONEncodeError if the output of default recurses to handling by default more than five levels deep.

It raises JSONEncodeError on circular references.

It raises JSONEncodeError if a tzinfo on a datetime object is incorrect.

JSONEncodeError is a subclass of TypeError. This is for compatibility with the standard library.

To serialize arbitrary types, specify default as a callable that returns a supported type. default may be a function, lambda, or callable class instance.

>>> import orjson, numpy
>>> def default(obj):
        if isinstance(obj, numpy.ndarray):
            return obj.tolist()
>>> orjson.dumps(numpy.random.rand(2, 2), default=default)
b'[[0.08423896597867486,0.854121264944197],[0.8452845446981371,0.19227780743524303]]'

If the default callable does not return an object, and an exception was raised within the default function, an exception describing this is raised. If no object is returned by the default callable but also no exception was raised, it falls through to raising JSONEncodeError on an unsupported type.

The default callable may return an object that itself must be handled by default up to five levels deep before an exception is raised.

Deserialize

def loads(__obj: Union[bytes, str]) -> Any: ...

loads() deserializes JSON to Python objects. It deserializes to dict, list, int, float, str, bool, and None objects.

Either bytes or str input are accepted. If the input exists as bytes (was read directly from a source), it is recommended to pass bytes. This has lower memory usage and lower latency.

orjson maintains a cache of map keys for the duration of the process. This causes a net reduction in memory usage by avoiding duplicate strings. The keys must be at most 64 chars to be cached and 512 entries are stored.

It raises JSONDecodeError if given an invalid type or invalid JSON. This includes if the input contains NaN, Infinity, or -Infinity, which the standard library allows, but is not valid JSON.

JSONDecodeError is a subclass of json.JSONDecodeError and ValueError. This is for compatibility with the standard library.

datetime

orjson serializes datetime.datetime objects to RFC 3339 format, a subset of ISO 8601.

datetime.datetime objects serialize with or without a tzinfo. For a full RFC 3339 representation, tzinfo must be present or orjson.OPT_NAIVE_UTC must be specified (e.g., for timestamps stored in a database in UTC and deserialized by the database adapter without a tzinfo). If a tzinfo is not present, a timezone offset is not serialized.

tzinfo, if specified, must be a timezone object that is either datetime.timezone.utc or from the pendulum, pytz, or dateutil/arrow libraries.

>>> import orjson, datetime, pendulum
>>> orjson.dumps(
    datetime.datetime(2018, 12, 1, 2, 3, 4, 9, tzinfo=pendulum.timezone('Australia/Adelaide'))
)
b'"2018-12-01T02:03:04.000009+10:30"'
>>> orjson.dumps(
    datetime.datetime.fromtimestamp(4123518902).replace(tzinfo=datetime.timezone.utc)
)
b'"2100-09-01T21:55:02+00:00"'
>>> orjson.dumps(
    datetime.datetime.fromtimestamp(4123518902)
)
b'"2100-09-01T21:55:02"'

orjson.OPT_NAIVE_UTC, if specified, only applies to objects that do not have a tzinfo.

>>> import orjson, datetime, pendulum
>>> orjson.dumps(
    datetime.datetime.fromtimestamp(4123518902),
    option=orjson.OPT_NAIVE_UTC
)
b'"2100-09-01T21:55:02+00:00"'
>>> orjson.dumps(
    datetime.datetime(2018, 12, 1, 2, 3, 4, 9, tzinfo=pendulum.timezone('Australia/Adelaide')),
    option=orjson.OPT_NAIVE_UTC
)
b'"2018-12-01T02:03:04.000009+10:30"'

datetime.time objects must not have a tzinfo.

>>> import orjson, datetime
>>> orjson.dumps(datetime.time(12, 0, 15, 290))
b'"12:00:15.000290"'

datetime.date objects will always serialize.

>>> import orjson, datetime
>>> orjson.dumps(datetime.date(1900, 1, 2))
b'"1900-01-02"'

Errors with tzinfo result in JSONEncodeError being raised.

It is faster to have orjson serialize datetime objects than to do so before calling dumps(). If using an unsupported type such as pendulum.datetime, use default.

int

JSON only requires that implementations accept integers with 53-bit precision. orjson will, by default, serialize 64-bit integers. This is compatible with the Python standard library and other non-browser implementations. For transmitting JSON to a web browser or other strict implementations, dumps() can be configured to raise a JSONEncodeError on values exceeding the 53-bit range.

>>> import orjson
>>> orjson.dumps(9007199254740992)
b'9007199254740992'
>>> orjson.dumps(9007199254740992, option=orjson.OPT_STRICT_INTEGER)
JSONEncodeError: Integer exceeds 53-bit range
>>> orjson.dumps(-9007199254740992, option=orjson.OPT_STRICT_INTEGER)
JSONEncodeError: Integer exceeds 53-bit range

float

orjson serializes and deserializes floats with no loss of precision and consistent rounding. The same behavior is observed in rapidjson, simplejson, and json. ujson is inaccurate in both serialization and deserialization, i.e., it modifies the data.

orjson.dumps() serializes Nan, Infinity, and -Infinity, which are not compliant JSON, as null:

>>> import orjson
>>> orjson.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
b'[null,null,null]'
>>> ujson.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
OverflowError: Invalid Inf value when encoding double
>>> rapidjson.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
'[NaN,Infinity,-Infinity]'
>>> json.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
'[NaN, Infinity, -Infinity]'

UTF-8

orjson raises an exception on invalid UTF-8. This is necessary because Python 3 str objects may contain UTF-16 surrogates.

The standard library's json module deserializes and serializes invalid UTF-8.

>>> import orjson, ujson, rapidjson, json
>>> orjson.dumps('\ud800')
JSONEncodeError: str is not valid UTF-8: surrogates not allowed
>>> ujson.dumps('\ud800')
UnicodeEncodeError: 'utf-8' codec ...
>>> rapidjson.dumps('\ud800')
UnicodeEncodeError: 'utf-8' codec ...
>>> json.dumps('\ud800')
'"\\ud800"'
>>> import orjson, ujson, rapidjson, json
>>> orjson.loads('"\\ud800"')
JSONDecodeError: unexpected end of hex escape at line 1 column 8: line 1 column 1 (char 0)
>>> ujson.loads('"\\ud800"')
''
>>> rapidjson.loads('"\\ud800"')
ValueError: Parse error at offset 1: The surrogate pair in string is invalid.
>>> json.loads('"\\ud800"')
'\ud800'

Testing

The library has comprehensive tests. There are tests against fixtures in the JSONTestSuite and nativejson-benchmark repositories. It is tested to not crash against the Big List of Naughty Strings. It is tested to not leak memory. It is tested to be correct against input from the PyJFuzz JSON fuzzer. It is tested to not crash against and not accept invalid UTF-8. There are integration tests exercising the library's use in web servers (gunicorn using multiprocess/forked workers) and when multithreaded. It also uses some tests from the ultrajson library.

Performance

Serialization and deserialization performance of orjson is better than ultrajson, rapidjson, simplejson, or json. The benchmarks are done on fixtures of real data:

  • twitter.json, 631.5KiB, results of a search on Twitter for "一", containing CJK strings, dictionaries of strings and arrays of dictionaries, indented.

  • github.json, 55.8KiB, a GitHub activity feed, containing dictionaries of strings and arrays of dictionaries, not indented.

  • citm_catalog.json, 1.7MiB, concert data, containing nested dictionaries of strings and arrays of integers, indented.

  • canada.json, 2.2MiB, coordinates of the Canadian border in GeoJSON format, containing floats and arrays, indented.

Latency

alt text alt text alt text alt text alt text alt text alt text alt text

twitter.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.76 1308.1 1
ujson 2.14 468 2.8
rapidjson 2.14 467.5 2.8
simplejson 3.45 289.1 4.52
json 3.6 277.9 4.71

twitter.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 2.8 357.9 1
ujson 3.37 296.1 1.21
rapidjson 4.48 222.9 1.6
simplejson 3.71 269.3 1.33
json 4.13 242.3 1.48

github.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.08 12430.9 1
ujson 0.21 4774.2 2.6
rapidjson 0.23 4350.4 2.87
simplejson 0.44 2290.5 5.42
json 0.36 2786.8 4.46

github.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.25 3939.5 1
ujson 0.33 3053.2 1.29
rapidjson 0.39 2589.7 1.52
simplejson 0.28 3549.6 1.11
json 0.36 2767.7 1.43

citm_catalog.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 1.17 856 1
ujson 3.65 273 3.11
rapidjson 3.45 274.1 2.94
simplejson 14.67 68.2 12.5
json 8.19 122.2 6.98

citm_catalog.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 5.62 178 1
ujson 6.76 148.3 1.2
rapidjson 7.65 129 1.36
simplejson 9.05 110.4 1.61
json 8.24 120.8 1.47

canada.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 7.58 138.6 1
ujson
rapidjson 73.02 13.7 9.64
simplejson 101.21 9.8 13.36
json 91.45 11.5 12.07

canada.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 22.89 43.8 1
ujson
rapidjson 47.18 21.3 2.06
simplejson 44.41 22.5 1.94
json 43.72 22.9 1.91

If a row is blank, the library did not serialize and deserialize the fixture without modifying it, e.g., returning different values for floating point numbers.

Memory

orjson's memory usage when deserializing is similar to or lower than the standard library and other third-party libraries.

This measures, in the first column, RSS after importing a library and reading the fixture, and in the second column, increases in RSS after repeatedly calling loads() on the fixture.

twitter.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 12.8 2.7
ujson 12.8 4.6
rapidjson 14.3 6.4
simplejson 13 2.8
json 12.3 2.5

github.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 12.3 0.3
ujson 12.4 0.5
rapidjson 13.8 0.5
simplejson 12.4 0.3
json 11.7 0.3

citm_catalog.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 13.9 8.3
ujson 13.8 12
rapidjson 15.5 20.3
simplejson 14.1 21.8
json 13.4 20.2

canada.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 16.5 17.5
ujson
rapidjson 17.8 19.8
simplejson 16.5 21.3
json 16.1 21.3

Reproducing

The above was measured using Python 3.7.4 on Linux with orjson 2.0.10, ujson 1.35, python-rapidson 0.8.0, and simplejson 3.16.0.

The latency results can be reproduced using the pybench and graph scripts. The memory results can be reproduced using the pymem script.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

orjson-2.0.11.tar.gz (502.1 kB view details)

Uploaded Source

Built Distributions

orjson-2.0.11-cp38-cp38-manylinux1_x86_64.whl (172.1 kB view details)

Uploaded CPython 3.8

orjson-2.0.11-cp37-none-win_amd64.whl (147.6 kB view details)

Uploaded CPython 3.7Windows x86-64

orjson-2.0.11-cp37-cp37m-manylinux1_x86_64.whl (172.0 kB view details)

Uploaded CPython 3.7m

orjson-2.0.11-cp37-cp37m-macosx_10_7_x86_64.whl (157.6 kB view details)

Uploaded CPython 3.7mmacOS 10.7+ x86-64

orjson-2.0.11-cp36-none-win_amd64.whl (147.8 kB view details)

Uploaded CPython 3.6Windows x86-64

orjson-2.0.11-cp36-cp36m-manylinux1_x86_64.whl (172.1 kB view details)

Uploaded CPython 3.6m

orjson-2.0.11-cp36-cp36m-macosx_10_7_x86_64.whl (157.8 kB view details)

Uploaded CPython 3.6mmacOS 10.7+ x86-64

orjson-2.0.11-cp35-none-win_amd64.whl (147.8 kB view details)

Uploaded CPython 3.5Windows x86-64

orjson-2.0.11-cp35-cp35m-manylinux1_x86_64.whl (172.1 kB view details)

Uploaded CPython 3.5m

orjson-2.0.11-cp35-cp35m-macosx_10_7_x86_64.whl (157.8 kB view details)

Uploaded CPython 3.5mmacOS 10.7+ x86-64

File details

Details for the file orjson-2.0.11.tar.gz.

File metadata

  • Download URL: orjson-2.0.11.tar.gz
  • Upload date:
  • Size: 502.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for orjson-2.0.11.tar.gz
Algorithm Hash digest
SHA256 5762bc2f8c9b5bb5111e9411e34eb47736a67c6135269ff22fd22257d855cd23
MD5 597259862176d2decda4b7174e1fdcfa
BLAKE2b-256 6cd16357446e83e4774efcf9798ee17ec40ba573033f8b2f956bcadc2007a737

See more details on using hashes here.

File details

Details for the file orjson-2.0.11-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: orjson-2.0.11-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 172.1 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.8.0b4

File hashes

Hashes for orjson-2.0.11-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 828062a4d54c7aef0318ca57387a908603ea15e52254f27b8d3906fbc02153a2
MD5 f2dd217e7b2258054f1d45f23cea602f
BLAKE2b-256 d820b03f06d47cbd0b51098d1594d5963064a0c28abda674c4ad125c59b8c875

See more details on using hashes here.

File details

Details for the file orjson-2.0.11-cp37-none-win_amd64.whl.

File metadata

  • Download URL: orjson-2.0.11-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 147.6 kB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for orjson-2.0.11-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 f83902278b98c450f3aee5ab5d79dcedbeafb3213e37fcb67cc0a9ba1c874505
MD5 bc86c9f55d221f7637d288ecedab1e3d
BLAKE2b-256 197093409c3b0b6ca7806cb3ebdc92e55a36fe56e3fae04ea9782b143d24e25b

See more details on using hashes here.

File details

Details for the file orjson-2.0.11-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: orjson-2.0.11-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 172.0 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for orjson-2.0.11-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 edf97eca7de7637fd428ce0491a5774b10822f6ae72fc5f2e20f8039f8ece3b5
MD5 b18368d47457b0a47797940cb181b38e
BLAKE2b-256 d4e50b305eb5f35dc55186b5cc95edd6e74bd4738d9e810c44336f380d61f542

See more details on using hashes here.

File details

Details for the file orjson-2.0.11-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

  • Download URL: orjson-2.0.11-cp37-cp37m-macosx_10_7_x86_64.whl
  • Upload date:
  • Size: 157.6 kB
  • Tags: CPython 3.7m, macOS 10.7+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for orjson-2.0.11-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 f47552505875604f0a402e450764c8cb980ce8be113b574ef678c0a07d54e83f
MD5 1cb41238d9ce6857113dd86bf7e6c5de
BLAKE2b-256 1f5fa84cb9c765544cda0bb4ffb17ef473fad31a637dba4ebc4b6b08c49f88dc

See more details on using hashes here.

File details

Details for the file orjson-2.0.11-cp36-none-win_amd64.whl.

File metadata

  • Download URL: orjson-2.0.11-cp36-none-win_amd64.whl
  • Upload date:
  • Size: 147.8 kB
  • Tags: CPython 3.6, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.8

File hashes

Hashes for orjson-2.0.11-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 90f837aa4c576ee809912887faaeaf16b3bec255075e5dbbaf62808b631f08d8
MD5 3d5ba6aa556ed0a5b06aea795406e692
BLAKE2b-256 dd109422055cba4c86ba4ba717ced264ac07564f9042b0eb1dcdd1051707c141

See more details on using hashes here.

File details

Details for the file orjson-2.0.11-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: orjson-2.0.11-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 172.1 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.9

File hashes

Hashes for orjson-2.0.11-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1c98ef382cfe2a585944bf0ee855a9b9f2dbc63ae06ae37c4fbd13bf2c3868f9
MD5 e513125d243aa3dcc88d770862625f16
BLAKE2b-256 e8c860a4c9135924e91a0546b13864520626d8dacb83e8ef2e6085a1adac98b5

See more details on using hashes here.

File details

Details for the file orjson-2.0.11-cp36-cp36m-macosx_10_7_x86_64.whl.

File metadata

  • Download URL: orjson-2.0.11-cp36-cp36m-macosx_10_7_x86_64.whl
  • Upload date:
  • Size: 157.8 kB
  • Tags: CPython 3.6m, macOS 10.7+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.9

File hashes

Hashes for orjson-2.0.11-cp36-cp36m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 a03b74d9af0cac8f44140840a62586a7b8a08185c9b8d9676f6f0dd09d4cc134
MD5 99068da439ef4dfc860f185653101814
BLAKE2b-256 304cc932fa2b4f7e290bcf46589b2d0b422a417e0e042395fa7b1d8e6b8d8277

See more details on using hashes here.

File details

Details for the file orjson-2.0.11-cp35-none-win_amd64.whl.

File metadata

  • Download URL: orjson-2.0.11-cp35-none-win_amd64.whl
  • Upload date:
  • Size: 147.8 kB
  • Tags: CPython 3.5, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/28.8.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.5.4

File hashes

Hashes for orjson-2.0.11-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 8405dd3fa7058c4ddce4446cdff089f668225f6791efbe08c84790d0af480dc1
MD5 a24a2b15a2da23ecb4348bc17093b284
BLAKE2b-256 8d429126e9f29f738d290ca4b4bb47ee7c22a9a5b9d0ec17e5c7202cc9453fb9

See more details on using hashes here.

File details

Details for the file orjson-2.0.11-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: orjson-2.0.11-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 172.1 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/28.8.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.5.7

File hashes

Hashes for orjson-2.0.11-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 491473776baa1bbb0a3bf0cfce0215bce7bde5db77b1e4d36f2f98a937f5eca6
MD5 2ffd0fc2ee2db12fe9206aed73beb0fd
BLAKE2b-256 b5516a55fb2c36df0812f8ae25cf54e756d52c90d482668b8d84c9f343cff7b9

See more details on using hashes here.

File details

Details for the file orjson-2.0.11-cp35-cp35m-macosx_10_7_x86_64.whl.

File metadata

  • Download URL: orjson-2.0.11-cp35-cp35m-macosx_10_7_x86_64.whl
  • Upload date:
  • Size: 157.8 kB
  • Tags: CPython 3.5m, macOS 10.7+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/28.8.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.5.7

File hashes

Hashes for orjson-2.0.11-cp35-cp35m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 e9e953c17de50bfcc007215f34e236030055e488dbc98d2ad8bdfb940cb96784
MD5 fd725c04011ebdb41b54cc1277f22137
BLAKE2b-256 9c9ea0736f27106f80e966d58cc826286e2ff6b09566a05cb9f68e2621d02930

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page