Skip to main content

Fast, correct Python JSON library supporting dataclasses, datetimes, and numpy

Project description

orjson

orjson is a fast, correct JSON library for Python. It benchmarks as the fastest Python library for JSON and is more correct than the standard json library or other third-party libraries. It serializes dataclass, datetime, numpy, and UUID instances natively.

Its features and drawbacks compared to other Python JSON libraries:

  • serializes dataclass instances 40-50x as fast as other libraries
  • serializes datetime, date, and time instances to RFC 3339 format, e.g., "1970-01-01T00:00:00+00:00"
  • serializes numpy.ndarray instances 4-12x as fast with 0.3x the memory usage of other libraries
  • pretty prints 10x to 20x as fast as the standard library
  • serializes to bytes rather than str, i.e., is not a drop-in replacement
  • serializes str without escaping unicode to ASCII, e.g., "好" rather than "\\u597d"
  • serializes float 10x as fast and deserializes twice as fast as other libraries
  • serializes subclasses of str, int, list, and dict natively, requiring default to specify how to serialize others
  • serializes arbitrary types using a default hook
  • has strict UTF-8 conformance, more correct than the standard library
  • has strict JSON conformance in not supporting Nan/Infinity/-Infinity
  • has an option for strict JSON conformance on 53-bit integers with default support for 64-bit
  • does not provide load() or dump() functions for reading from/writing to file-like objects

orjson supports CPython 3.7, 3.8, 3.9, and 3.10. It distributes x86_64/amd64, aarch64/armv8, and arm7 wheels for Linux, amd64 and aarch64 wheels for macOS, and amd64 wheels for Windows. orjson does not support PyPy. Releases follow semantic versioning and serializing a new object type without an opt-in flag is considered a breaking change.

orjson is licensed under both the Apache 2.0 and MIT licenses. The repository and issue tracker is github.com/ijl/orjson, and patches may be submitted there. There is a CHANGELOG available in the repository.

  1. Usage
    1. Install
    2. Quickstart
    3. Migrating
    4. Serialize
      1. default
      2. option
    5. Deserialize
  2. Types
    1. dataclass
    2. datetime
    3. enum
    4. float
    5. int
    6. numpy
    7. str
    8. uuid
  3. Testing
  4. Performance
    1. Latency
    2. Memory
    3. Reproducing
  5. Questions
  6. Packaging
  7. License

Usage

Install

To install a wheel from PyPI:

pip install --upgrade "pip>=20.3" # manylinux_x_y, universal2 wheel support
pip install --upgrade orjson

To build a wheel, see packaging.

Quickstart

This is an example of serializing, with options specified, and deserializing:

>>> import orjson, datetime, numpy
>>> data = {
    "type": "job",
    "created_at": datetime.datetime(1970, 1, 1),
    "status": "🆗",
    "payload": numpy.array([[1, 2], [3, 4]]),
}
>>> orjson.dumps(data, option=orjson.OPT_NAIVE_UTC | orjson.OPT_SERIALIZE_NUMPY)
b'{"type":"job","created_at":"1970-01-01T00:00:00+00:00","status":"\xf0\x9f\x86\x97","payload":[[1,2],[3,4]]}'
>>> orjson.loads(_)
{'type': 'job', 'created_at': '1970-01-01T00:00:00+00:00', 'status': '🆗', 'payload': [[1, 2], [3, 4]]}

Migrating

orjson version 3 serializes more types than version 2. Subclasses of str, int, dict, and list are now serialized. This is faster and more similar to the standard library. It can be disabled with orjson.OPT_PASSTHROUGH_SUBCLASS.dataclasses.dataclass instances are now serialized by default and cannot be customized in a default function unless option=orjson.OPT_PASSTHROUGH_DATACLASS is specified. uuid.UUID instances are serialized by default. For any type that is now serialized, implementations in a default function and options enabling them can be removed but do not need to be. There was no change in deserialization.

To migrate from the standard library, the largest difference is that orjson.dumps returns bytes and json.dumps returns a str. Users with dict objects using non-str keys should specify option=orjson.OPT_NON_STR_KEYS. sort_keys is replaced by option=orjson.OPT_SORT_KEYS. indent is replaced by option=orjson.OPT_INDENT_2 and other levels of indentation are not supported.

Serialize

def dumps(
    __obj: Any,
    default: Optional[Callable[[Any], Any]] = ...,
    option: Optional[int] = ...,
) -> bytes: ...

dumps() serializes Python objects to JSON.

It natively serializes str, dict, list, tuple, int, float, bool, dataclasses.dataclass, typing.TypedDict, datetime.datetime, datetime.date, datetime.time, uuid.UUID, numpy.ndarray, and None instances. It supports arbitrary types through default. It serializes subclasses of str, int, dict, list, dataclasses.dataclass, and enum.Enum. It does not serialize subclasses of tuple to avoid serializing namedtuple objects as arrays. To avoid serializing subclasses, specify the option orjson.OPT_PASSTHROUGH_SUBCLASS.

The output is a bytes object containing UTF-8.

The global interpreter lock (GIL) is held for the duration of the call.

It raises JSONEncodeError on an unsupported type. This exception message describes the invalid object with the error message Type is not JSON serializable: .... To fix this, specify default.

It raises JSONEncodeError on a str that contains invalid UTF-8.

It raises JSONEncodeError on an integer that exceeds 64 bits by default or, with OPT_STRICT_INTEGER, 53 bits.

It raises JSONEncodeError if a dict has a key of a type other than str, unless OPT_NON_STR_KEYS is specified.

It raises JSONEncodeError if the output of default recurses to handling by default more than 254 levels deep.

It raises JSONEncodeError on circular references.

It raises JSONEncodeError if a tzinfo on a datetime object is unsupported.

JSONEncodeError is a subclass of TypeError. This is for compatibility with the standard library.

default

To serialize a subclass or arbitrary types, specify default as a callable that returns a supported type. default may be a function, lambda, or callable class instance. To specify that a type was not handled by default, raise an exception such as TypeError.

>>> import orjson, decimal
>>>
def default(obj):
    if isinstance(obj, decimal.Decimal):
        return str(obj)
    raise TypeError

>>> orjson.dumps(decimal.Decimal("0.0842389659712649442845"))
JSONEncodeError: Type is not JSON serializable: decimal.Decimal
>>> orjson.dumps(decimal.Decimal("0.0842389659712649442845"), default=default)
b'"0.0842389659712649442845"'
>>> orjson.dumps({1, 2}, default=default)
orjson.JSONEncodeError: Type is not JSON serializable: set

The default callable may return an object that itself must be handled by default up to 254 times before an exception is raised.

It is important that default raise an exception if a type cannot be handled. Python otherwise implicitly returns None, which appears to the caller like a legitimate value and is serialized:

>>> import orjson, json, rapidjson
>>>
def default(obj):
    if isinstance(obj, decimal.Decimal):
        return str(obj)

>>> orjson.dumps({"set":{1, 2}}, default=default)
b'{"set":null}'
>>> json.dumps({"set":{1, 2}}, default=default)
'{"set":null}'
>>> rapidjson.dumps({"set":{1, 2}}, default=default)
'{"set":null}'

option

To modify how data is serialized, specify option. Each option is an integer constant in orjson. To specify multiple options, mask them together, e.g., option=orjson.OPT_STRICT_INTEGER | orjson.OPT_NAIVE_UTC.

OPT_APPEND_NEWLINE

Append \n to the output. This is a convenience and optimization for the pattern of dumps(...) + "\n". bytes objects are immutable and this pattern copies the original contents.

>>> import orjson
>>> orjson.dumps([])
b"[]"
>>> orjson.dumps([], option=orjson.OPT_APPEND_NEWLINE)
b"[]\n"
OPT_INDENT_2

Pretty-print output with an indent of two spaces. This is equivalent to indent=2 in the standard library. Pretty printing is slower and the output larger. orjson is the fastest compared library at pretty printing and has much less of a slowdown to pretty print than the standard library does. This option is compatible with all other options.

>>> import orjson
>>> orjson.dumps({"a": "b", "c": {"d": True}, "e": [1, 2]})
b'{"a":"b","c":{"d":true},"e":[1,2]}'
>>> orjson.dumps(
    {"a": "b", "c": {"d": True}, "e": [1, 2]},
    option=orjson.OPT_INDENT_2
)
b'{\n  "a": "b",\n  "c": {\n    "d": true\n  },\n  "e": [\n    1,\n    2\n  ]\n}'

If displayed, the indentation and linebreaks appear like this:

{
  "a": "b",
  "c": {
    "d": true
  },
  "e": [
    1,
    2
  ]
}

This measures serializing the github.json fixture as compact (52KiB) or pretty (64KiB):

Library compact (ms) pretty (ms) vs. orjson
orjson 0.06 0.07 1.0
ujson 0.18 0.19 2.8
rapidjson 0.22
simplejson 0.35 1.49 21.4
json 0.36 1.19 17.2

This measures serializing the citm_catalog.json fixture, more of a worst case due to the amount of nesting and newlines, as compact (489KiB) or pretty (1.1MiB):

Library compact (ms) pretty (ms) vs. orjson
orjson 0.88 1.73 1.0
ujson 3.73 4.52 2.6
rapidjson 3.54
simplejson 11.77 72.06 41.6
json 6.71 55.22 31.9

rapidjson is blank because it does not support pretty printing. This can be reproduced using the pyindent script.

OPT_NAIVE_UTC

Serialize datetime.datetime objects without a tzinfo as UTC. This has no effect on datetime.datetime objects that have tzinfo set.

>>> import orjson, datetime
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0),
    )
b'"1970-01-01T00:00:00"'
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0),
        option=orjson.OPT_NAIVE_UTC,
    )
b'"1970-01-01T00:00:00+00:00"'
OPT_NON_STR_KEYS

Serialize dict keys of type other than str. This allows dict keys to be one of str, int, float, bool, None, datetime.datetime, datetime.date, datetime.time, enum.Enum, and uuid.UUID. For comparison, the standard library serializes str, int, float, bool or None by default. orjson benchmarks as being faster at serializing non-str keys than other libraries. This option is slower for str keys than the default.

>>> import orjson, datetime, uuid
>>> orjson.dumps(
        {uuid.UUID("7202d115-7ff3-4c81-a7c1-2a1f067b1ece"): [1, 2, 3]},
        option=orjson.OPT_NON_STR_KEYS,
    )
b'{"7202d115-7ff3-4c81-a7c1-2a1f067b1ece":[1,2,3]}'
>>> orjson.dumps(
        {datetime.datetime(1970, 1, 1, 0, 0, 0): [1, 2, 3]},
        option=orjson.OPT_NON_STR_KEYS | orjson.OPT_NAIVE_UTC,
    )
b'{"1970-01-01T00:00:00+00:00":[1,2,3]}'

These types are generally serialized how they would be as values, e.g., datetime.datetime is still an RFC 3339 string and respects options affecting it. The exception is that int serialization does not respect OPT_STRICT_INTEGER.

This option has the risk of creating duplicate keys. This is because non-str objects may serialize to the same str as an existing key, e.g., {"1": true, 1: false}. The last key to be inserted to the dict will be serialized last and a JSON deserializer will presumably take the last occurrence of a key (in the above, false). The first value will be lost.

This option is compatible with orjson.OPT_SORT_KEYS. If sorting is used, note the sort is unstable and will be unpredictable for duplicate keys.

>>> import orjson, datetime
>>> orjson.dumps(
    {"other": 1, datetime.date(1970, 1, 5): 2, datetime.date(1970, 1, 3): 3},
    option=orjson.OPT_NON_STR_KEYS | orjson.OPT_SORT_KEYS
)
b'{"1970-01-03":3,"1970-01-05":2,"other":1}'

This measures serializing 589KiB of JSON comprising a list of 100 dict in which each dict has both 365 randomly-sorted int keys representing epoch timestamps as well as one str key and the value for each key is a single integer. In "str keys", the keys were converted to str before serialization, and orjson still specifes option=orjson.OPT_NON_STR_KEYS (which is always somewhat slower).

Library str keys (ms) int keys (ms) int keys sorted (ms)
orjson 1.53 2.16 4.29
ujson 3.07 5.65
rapidjson 4.29
simplejson 11.24 14.50 21.86
json 7.17 8.49

ujson is blank for sorting because it segfaults. json is blank because it raises TypeError on attempting to sort before converting all keys to str. rapidjson is blank because it does not support non-str keys. This can be reproduced using the pynonstr script.

OPT_OMIT_MICROSECONDS

Do not serialize the microsecond field on datetime.datetime and datetime.time instances.

>>> import orjson, datetime
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0, 1),
    )
b'"1970-01-01T00:00:00.000001"'
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0, 1),
        option=orjson.OPT_OMIT_MICROSECONDS,
    )
b'"1970-01-01T00:00:00"'
OPT_PASSTHROUGH_DATACLASS

Passthrough dataclasses.dataclass instances to default. This allows customizing their output but is much slower.

>>> import orjson, dataclasses
>>>
@dataclasses.dataclass
class User:
    id: str
    name: str
    password: str

def default(obj):
    if isinstance(obj, User):
        return {"id": obj.id, "name": obj.name}
    raise TypeError

>>> orjson.dumps(User("3b1", "asd", "zxc"))
b'{"id":"3b1","name":"asd","password":"zxc"}'
>>> orjson.dumps(User("3b1", "asd", "zxc"), option=orjson.OPT_PASSTHROUGH_DATACLASS)
TypeError: Type is not JSON serializable: User
>>> orjson.dumps(
        User("3b1", "asd", "zxc"),
        option=orjson.OPT_PASSTHROUGH_DATACLASS,
        default=default,
    )
b'{"id":"3b1","name":"asd"}'
OPT_PASSTHROUGH_DATETIME

Passthrough datetime.datetime, datetime.date, and datetime.time instances to default. This allows serializing datetimes to a custom format, e.g., HTTP dates:

>>> import orjson, datetime
>>>
def default(obj):
    if isinstance(obj, datetime.datetime):
        return obj.strftime("%a, %d %b %Y %H:%M:%S GMT")
    raise TypeError

>>> orjson.dumps({"created_at": datetime.datetime(1970, 1, 1)})
b'{"created_at":"1970-01-01T00:00:00"}'
>>> orjson.dumps({"created_at": datetime.datetime(1970, 1, 1)}, option=orjson.OPT_PASSTHROUGH_DATETIME)
TypeError: Type is not JSON serializable: datetime.datetime
>>> orjson.dumps(
        {"created_at": datetime.datetime(1970, 1, 1)},
        option=orjson.OPT_PASSTHROUGH_DATETIME,
        default=default,
    )
b'{"created_at":"Thu, 01 Jan 1970 00:00:00 GMT"}'

This does not affect datetimes in dict keys if using OPT_NON_STR_KEYS.

OPT_PASSTHROUGH_SUBCLASS

Passthrough subclasses of builtin types to default.

>>> import orjson
>>>
class Secret(str):
    pass

def default(obj):
    if isinstance(obj, Secret):
        return "******"
    raise TypeError

>>> orjson.dumps(Secret("zxc"))
b'"zxc"'
>>> orjson.dumps(Secret("zxc"), option=orjson.OPT_PASSTHROUGH_SUBCLASS)
TypeError: Type is not JSON serializable: Secret
>>> orjson.dumps(Secret("zxc"), option=orjson.OPT_PASSTHROUGH_SUBCLASS, default=default)
b'"******"'

This does not affect serializing subclasses as dict keys if using OPT_NON_STR_KEYS.

OPT_SERIALIZE_DATACLASS

This is deprecated and has no effect in version 3. In version 2 this was required to serialize dataclasses.dataclass instances. For more, see dataclass.

OPT_SERIALIZE_NUMPY

Serialize numpy.ndarray instances. For more, see numpy.

OPT_SERIALIZE_UUID

This is deprecated and has no effect in version 3. In version 2 this was required to serialize uuid.UUID instances. For more, see UUID.

OPT_SORT_KEYS

Serialize dict keys in sorted order. The default is to serialize in an unspecified order. This is equivalent to sort_keys=True in the standard library.

This can be used to ensure the order is deterministic for hashing or tests. It has a substantial performance penalty and is not recommended in general.

>>> import orjson
>>> orjson.dumps({"b": 1, "c": 2, "a": 3})
b'{"b":1,"c":2,"a":3}'
>>> orjson.dumps({"b": 1, "c": 2, "a": 3}, option=orjson.OPT_SORT_KEYS)
b'{"a":3,"b":1,"c":2}'

This measures serializing the twitter.json fixture unsorted and sorted:

Library unsorted (ms) sorted (ms) vs. orjson
orjson 0.5 0.92 1
ujson 1.61 2.48 2.7
rapidjson 2.17 2.89 3.2
simplejson 3.56 5.13 5.6
json 3.59 4.59 5

The benchmark can be reproduced using the pysort script.

The sorting is not collation/locale-aware:

>>> import orjson
>>> orjson.dumps({"a": 1, "ä": 2, "A": 3}, option=orjson.OPT_SORT_KEYS)
b'{"A":3,"a":1,"\xc3\xa4":2}'

This is the same sorting behavior as the standard library, rapidjson, simplejson, and ujson.

dataclass also serialize as maps but this has no effect on them.

OPT_STRICT_INTEGER

Enforce 53-bit limit on integers. The limit is otherwise 64 bits, the same as the Python standard library. For more, see int.

OPT_UTC_Z

Serialize a UTC timezone on datetime.datetime instances as Z instead of +00:00.

>>> import orjson, datetime, zoneinfo
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=zoneinfo.ZoneInfo("UTC")),
    )
b'"1970-01-01T00:00:00+00:00"'
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=zoneinfo.ZoneInfo("UTC")),
        option=orjson.OPT_UTC_Z
    )
b'"1970-01-01T00:00:00Z"'

Deserialize

def loads(__obj: Union[bytes, bytearray, memoryview, str]) -> Any: ...

loads() deserializes JSON to Python objects. It deserializes to dict, list, int, float, str, bool, and None objects.

bytes, bytearray, memoryview, and str input are accepted. If the input exists as a memoryview, bytearray, or bytes object, it is recommended to pass these directly rather than creating an unnecessary str object. This has lower memory usage and lower latency.

The input must be valid UTF-8.

orjson maintains a cache of map keys for the duration of the process. This causes a net reduction in memory usage by avoiding duplicate strings. The keys must be at most 64 bytes to be cached and 512 entries are stored.

The global interpreter lock (GIL) is held for the duration of the call.

It raises JSONDecodeError if given an invalid type or invalid JSON. This includes if the input contains NaN, Infinity, or -Infinity, which the standard library allows, but is not valid JSON.

JSONDecodeError is a subclass of json.JSONDecodeError and ValueError. This is for compatibility with the standard library.

Types

dataclass

orjson serializes instances of dataclasses.dataclass natively. It serializes instances 40-50x as fast as other libraries and avoids a severe slowdown seen in other libraries compared to serializing dict.

It is supported to pass all variants of dataclasses, including dataclasses using __slots__, frozen dataclasses, those with optional or default attributes, and subclasses. There is a performance benefit to not using __slots__.

Library dict (ms) dataclass (ms) vs. orjson
orjson 1.40 1.60 1
ujson
rapidjson 3.64 68.48 42
simplejson 14.21 92.18 57
json 13.28 94.90 59

This measures serializing 555KiB of JSON, orjson natively and other libraries using default to serialize the output of dataclasses.asdict(). This can be reproduced using the pydataclass script.

Dataclasses are serialized as maps, with every attribute serialized and in the order given on class definition:

>>> import dataclasses, orjson, typing

@dataclasses.dataclass
class Member:
    id: int
    active: bool = dataclasses.field(default=False)

@dataclasses.dataclass
class Object:
    id: int
    name: str
    members: typing.List[Member]

>>> orjson.dumps(Object(1, "a", [Member(1, True), Member(2)]))
b'{"id":1,"name":"a","members":[{"id":1,"active":true},{"id":2,"active":false}]}'

datetime

orjson serializes datetime.datetime objects to RFC 3339 format, e.g., "1970-01-01T00:00:00+00:00". This is a subset of ISO 8601 and is compatible with isoformat() in the standard library.

>>> import orjson, datetime, zoneinfo
>>> orjson.dumps(
    datetime.datetime(2018, 12, 1, 2, 3, 4, 9, tzinfo=zoneinfo.ZoneInfo("Australia/Adelaide"))
)
b'"2018-12-01T02:03:04.000009+10:30"'
>>> orjson.dumps(
    datetime.datetime(2100, 9, 1, 21, 55, 2).replace(tzinfo=zoneinfo.ZoneInfo("UTC"))
)
b'"2100-09-01T21:55:02+00:00"'
>>> orjson.dumps(
    datetime.datetime(2100, 9, 1, 21, 55, 2)
)
b'"2100-09-01T21:55:02"'

datetime.datetime supports instances with a tzinfo that is None, datetime.timezone.utc, a timezone instance from the python3.9+ zoneinfo module, or a timezone instance from the third-party pendulum, pytz, or dateutil/arrow libraries.

It is fastest to use the standard library's zoneinfo.ZoneInfo for timezones.

datetime.time objects must not have a tzinfo.

>>> import orjson, datetime
>>> orjson.dumps(datetime.time(12, 0, 15, 290))
b'"12:00:15.000290"'

datetime.date objects will always serialize.

>>> import orjson, datetime
>>> orjson.dumps(datetime.date(1900, 1, 2))
b'"1900-01-02"'

Errors with tzinfo result in JSONEncodeError being raised.

It is faster to have orjson serialize datetime objects than to do so before calling dumps(). If using an unsupported type such as pendulum.datetime, use default.

To disable serialization of datetime objects specify the option orjson.OPT_PASSTHROUGH_DATETIME.

To use "Z" suffix instead of "+00:00" to indicate UTC ("Zulu") time, use the option orjson.OPT_UTC_Z.

To assume datetimes without timezone are UTC, use the option orjson.OPT_NAIVE_UTC.

enum

orjson serializes enums natively. Options apply to their values.

>>> import enum, datetime, orjson
>>>
class DatetimeEnum(enum.Enum):
    EPOCH = datetime.datetime(1970, 1, 1, 0, 0, 0)
>>> orjson.dumps(DatetimeEnum.EPOCH)
b'"1970-01-01T00:00:00"'
>>> orjson.dumps(DatetimeEnum.EPOCH, option=orjson.OPT_NAIVE_UTC)
b'"1970-01-01T00:00:00+00:00"'

Enums with members that are not supported types can be serialized using default:

>>> import enum, orjson
>>>
class Custom:
    def __init__(self, val):
        self.val = val

def default(obj):
    if isinstance(obj, Custom):
        return obj.val
    raise TypeError

class CustomEnum(enum.Enum):
    ONE = Custom(1)

>>> orjson.dumps(CustomEnum.ONE, default=default)
b'1'

float

orjson serializes and deserializes double precision floats with no loss of precision and consistent rounding.

orjson.dumps() serializes Nan, Infinity, and -Infinity, which are not compliant JSON, as null:

>>> import orjson, ujson, rapidjson, json
>>> orjson.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
b'[null,null,null]'
>>> ujson.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
OverflowError: Invalid Inf value when encoding double
>>> rapidjson.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
'[NaN,Infinity,-Infinity]'
>>> json.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
'[NaN, Infinity, -Infinity]'

int

orjson serializes and deserializes 64-bit integers by default. The range supported is a signed 64-bit integer's minimum (-9223372036854775807) to an unsigned 64-bit integer's maximum (18446744073709551615). This is widely compatible, but there are implementations that only support 53-bits for integers, e.g., web browsers. For those implementations, dumps() can be configured to raise a JSONEncodeError on values exceeding the 53-bit range.

>>> import orjson
>>> orjson.dumps(9007199254740992)
b'9007199254740992'
>>> orjson.dumps(9007199254740992, option=orjson.OPT_STRICT_INTEGER)
JSONEncodeError: Integer exceeds 53-bit range
>>> orjson.dumps(-9007199254740992, option=orjson.OPT_STRICT_INTEGER)
JSONEncodeError: Integer exceeds 53-bit range

numpy

orjson natively serializes numpy.ndarray and individual numpy.float64, numpy.float32, numpy.int64, numpy.int32, numpy.int8, numpy.uint64, numpy.uint32, numpy.uint8, numpy.uintp, or numpy.intp, and numpy.datetime64 instances.

orjson is faster than all compared libraries at serializing numpy instances. Serializing numpy data requires specifying option=orjson.OPT_SERIALIZE_NUMPY.

>>> import orjson, numpy
>>> orjson.dumps(
        numpy.array([[1, 2, 3], [4, 5, 6]]),
        option=orjson.OPT_SERIALIZE_NUMPY,
)
b'[[1,2,3],[4,5,6]]'

The array must be a contiguous C array (C_CONTIGUOUS) and one of the supported datatypes.

numpy.datetime64 instances are serialized as RFC 3339 strings and datetime options affect them.

>>> import orjson, numpy
>>> orjson.dumps(
        numpy.datetime64("2021-01-01T00:00:00.172"),
        option=orjson.OPT_SERIALIZE_NUMPY,
)
b'"2021-01-01T00:00:00.172000"'
>>> orjson.dumps(
        numpy.datetime64("2021-01-01T00:00:00.172"),
        option=(
            orjson.OPT_SERIALIZE_NUMPY |
            orjson.OPT_NAIVE_UTC |
            orjson.OPT_OMIT_MICROSECONDS
        ),
)
b'"2021-01-01T00:00:00+00:00"'

If an array is not a contiguous C array, contains an supported datatype, or contains a numpy.datetime64 using an unsupported representation (e.g., picoseconds), orjson falls through to default. In default, obj.tolist() can be specified. If an array is malformed, which is not expected, orjson.JSONEncodeError is raised.

This measures serializing 92MiB of JSON from an numpy.ndarray with dimensions of (50000, 100) and numpy.float64 values:

Library Latency (ms) RSS diff (MiB) vs. orjson
orjson 194 99 1.0
ujson
rapidjson 3,048 309 15.7
simplejson 3,023 297 15.6
json 3,133 297 16.1

This measures serializing 100MiB of JSON from an numpy.ndarray with dimensions of (100000, 100) and numpy.int32 values:

Library Latency (ms) RSS diff (MiB) vs. orjson
orjson 178 115 1.0
ujson
rapidjson 1,512 551 8.5
simplejson 1,606 504 9.0
json 1,506 503 8.4

This measures serializing 105MiB of JSON from an numpy.ndarray with dimensions of (100000, 200) and numpy.bool values:

Library Latency (ms) RSS diff (MiB) vs. orjson
orjson 157 120 1.0
ujson
rapidjson 710 327 4.5
simplejson 931 398 5.9
json 996 400 6.3

In these benchmarks, orjson serializes natively, ujson is blank because it does not support a default parameter, and the other libraries serialize ndarray.tolist() via default. The RSS column measures peak memory usage during serialization. This can be reproduced using the pynumpy script.

orjson does not have an installation or compilation dependency on numpy. The implementation is independent, reading numpy.ndarray using PyArrayInterface.

str

orjson is strict about UTF-8 conformance. This is stricter than the standard library's json module, which will serialize and deserialize UTF-16 surrogates, e.g., "\ud800", that are invalid UTF-8.

If orjson.dumps() is given a str that does not contain valid UTF-8, orjson.JSONEncodeError is raised. If loads() receives invalid UTF-8, orjson.JSONDecodeError is raised.

orjson and rapidjson are the only compared JSON libraries to consistently error on bad input.

>>> import orjson, ujson, rapidjson, json
>>> orjson.dumps('\ud800')
JSONEncodeError: str is not valid UTF-8: surrogates not allowed
>>> ujson.dumps('\ud800')
UnicodeEncodeError: 'utf-8' codec ...
>>> rapidjson.dumps('\ud800')
UnicodeEncodeError: 'utf-8' codec ...
>>> json.dumps('\ud800')
'"\\ud800"'
>>> orjson.loads('"\\ud800"')
JSONDecodeError: unexpected end of hex escape at line 1 column 8: line 1 column 1 (char 0)
>>> ujson.loads('"\\ud800"')
''
>>> rapidjson.loads('"\\ud800"')
ValueError: Parse error at offset 1: The surrogate pair in string is invalid.
>>> json.loads('"\\ud800"')
'\ud800'

To make a best effort at deserializing bad input, first decode bytes using the replace or lossy argument for errors:

>>> import orjson
>>> orjson.loads(b'"\xed\xa0\x80"')
JSONDecodeError: str is not valid UTF-8: surrogates not allowed
>>> orjson.loads(b'"\xed\xa0\x80"'.decode("utf-8", "replace"))
'���'

uuid

orjson serializes uuid.UUID instances to RFC 4122 format, e.g., "f81d4fae-7dec-11d0-a765-00a0c91e6bf6".

>>> import orjson, uuid
>>> orjson.dumps(uuid.UUID('f81d4fae-7dec-11d0-a765-00a0c91e6bf6'))
b'"f81d4fae-7dec-11d0-a765-00a0c91e6bf6"'
>>> orjson.dumps(uuid.uuid5(uuid.NAMESPACE_DNS, "python.org"))
b'"886313e1-3b8a-5372-9b90-0c9aee199e5d"'

Testing

The library has comprehensive tests. There are tests against fixtures in the JSONTestSuite and nativejson-benchmark repositories. It is tested to not crash against the Big List of Naughty Strings. It is tested to not leak memory. It is tested to not crash against and not accept invalid UTF-8. There are integration tests exercising the library's use in web servers (gunicorn using multiprocess/forked workers) and when multithreaded. It also uses some tests from the ultrajson library.

orjson is the most correct of the compared libraries. This graph shows how each library handles a combined 342 JSON fixtures from the JSONTestSuite and nativejson-benchmark tests:

Library Invalid JSON documents not rejected Valid JSON documents not deserialized
orjson 0 0
ujson 38 0
rapidjson 6 0
simplejson 13 0
json 17 0

This shows that all libraries deserialize valid JSON but only orjson correctly rejects the given invalid JSON fixtures. Errors are largely due to accepting invalid strings and numbers.

The graph above can be reproduced using the pycorrectness script.

Performance

Serialization and deserialization performance of orjson is better than ultrajson, rapidjson, simplejson, or json. The benchmarks are done on fixtures of real data:

  • twitter.json, 631.5KiB, results of a search on Twitter for "一", containing CJK strings, dictionaries of strings and arrays of dictionaries, indented.

  • github.json, 55.8KiB, a GitHub activity feed, containing dictionaries of strings and arrays of dictionaries, not indented.

  • citm_catalog.json, 1.7MiB, concert data, containing nested dictionaries of strings and arrays of integers, indented.

  • canada.json, 2.2MiB, coordinates of the Canadian border in GeoJSON format, containing floats and arrays, indented.

Latency

twitter.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.41 2419.7 1
ujson 1.8 555.2 4.36
rapidjson 1.26 795 3.05
simplejson 2.27 440.6 5.5
json 1.83 548.2 4.42

twitter.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.85 1173 1
ujson 1.88 532.1 2.2
rapidjson 2.7 371 3.16
simplejson 2.16 463.1 2.53
json 2.33 429.7 2.73

github.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.04 23751.2 1
ujson 0.18 5498.1 4.31
rapidjson 0.1 9557 2.48
simplejson 0.25 3989.7 5.94
json 0.18 5457.6 4.36

github.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.07 14680.6 1
ujson 0.19 5224.3 2.81
rapidjson 0.17 5913.2 2.49
simplejson 0.15 6840.8 2.15
json 0.15 6480.2 2.27

citm_catalog.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.7 1420.8 1
ujson 2.89 345.2 4.1
rapidjson 1.84 543.3 2.61
simplejson 10.06 99.4 14.29
json 3.94 254 5.59

citm_catalog.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 1.72 579.6 1
ujson 3.68 272.1 2.13
rapidjson 5.61 178.4 3.26
simplejson 5.06 198.2 2.94
json 5.09 196.9 2.95

canada.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 3.65 274.5 1
ujson 12.59 79.3 3.45
rapidjson 34.24 29.2 9.39
simplejson 57.43 17.4 15.75
json 36.03 27.6 9.88

canada.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 4.18 240.2 1
ujson 9.29 107.8 2.22
rapidjson 23.56 42.4 5.64
simplejson 21.93 45.5 5.25
json 21.34 46.9 5.11

Memory

orjson as of 3.7.0 has higher baseline memory usage than other libraries due to a persistent buffer used for parsing. Incremental memory usage when deserializing is similar to the standard library and other third-party libraries.

This measures, in the first column, RSS after importing a library and reading the fixture, and in the second column, increases in RSS after repeatedly calling loads() on the fixture.

twitter.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 21.8 2.8
ujson 14.3 4.8
rapidjson 14.9 4.6
simplejson 13.4 2.4
json 13.1 2.3

github.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 21.2 0.5
ujson 13.6 0.6
rapidjson 14.1 0.5
simplejson 12.5 0.3
json 12.4 0.3

citm_catalog.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 23 10.6
ujson 15.2 11.2
rapidjson 15.8 29.7
simplejson 14.4 24.7
json 13.9 24.7

canada.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 23.2 21.3
ujson 15.6 19.2
rapidjson 16.3 23.4
simplejson 15 21.1
json 14.3 20.9

Reproducing

The above was measured using Python 3.10.4 on Linux (amd64) with orjson 3.7.0, ujson 5.3.0, python-rapidson 1.6, and simplejson 3.17.6.

The latency results can be reproduced using the pybench and graph scripts. The memory results can be reproduced using the pymem script.

Questions

Why can't I install it from PyPI?

Probably pip needs to be upgraded to version 20.3 or later to support the latest manylinux_x_y or universal2 wheel formats.

Will it deserialize to dataclasses, UUIDs, decimals, etc or support object_hook?

No. This requires a schema specifying what types are expected and how to handle errors etc. This is addressed by data validation libraries a level above this.

Will it serialize to str?

No. bytes is the correct type for a serialized blob.

Will it support PyPy?

Probably not.

Packaging

To package orjson requires at least Rust 1.54 and the maturin build tool. It benefits from also having clang. The recommended build command is:

maturin build --no-sdist --release --strip --cargo-extra-args="--features=yyjson"

To build without use of clang, do not specify --features=yyjson. Deserialization is much faster if built with this feature.

There is a minor performance benefit on at least amd64 to building on nightly with --features=unstable-simd. It may be more significant on other architectures.

The project's own CI tests against nightly-2022-06-01 and stable 1.54. It is prudent to pin the nightly version because that channel can introduce breaking changes.

orjson is tested for amd64, aarch64, and arm7 on Linux. It is tested for amd64 on macOS and cross-compiles for aarch64. For Windows it is tested on amd64.

There are no runtime dependencies other than libc.

orjson's tests are included in the source distribution on PyPI. The requirements to run the tests are specified in test/requirements.txt. The tests should be run as part of the build. It can be run with pytest -q test.

License

orjson was written by ijl <ijl@mailbox.org>, copyright 2018 - 2022, licensed under both the Apache 2 and MIT licenses.

Project details


Release history Release notifications | RSS feed

This version

3.7.2

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

orjson-3.7.2.tar.gz (639.7 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

orjson-3.7.2-cp310-none-win_amd64.whl (189.5 kB view details)

Uploaded CPython 3.10Windows x86-64

orjson-3.7.2-cp310-cp310-musllinux_1_1_x86_64.whl (289.3 kB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ x86-64

orjson-3.7.2-cp310-cp310-manylinux_2_28_x86_64.whl (273.4 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ x86-64

orjson-3.7.2-cp310-cp310-manylinux_2_28_aarch64.whl (250.4 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ ARM64

orjson-3.7.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (256.7 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

orjson-3.7.2-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (246.6 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARMv7l

orjson-3.7.2-cp310-cp310-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (447.0 kB view details)

Uploaded CPython 3.10macOS 10.9+ universal2 (ARM64, x86-64)macOS 10.9+ x86-64macOS 11.0+ ARM64

orjson-3.7.2-cp310-cp310-macosx_10_7_x86_64.whl (261.4 kB view details)

Uploaded CPython 3.10macOS 10.7+ x86-64

orjson-3.7.2-cp39-none-win_amd64.whl (189.5 kB view details)

Uploaded CPython 3.9Windows x86-64

orjson-3.7.2-cp39-cp39-musllinux_1_1_x86_64.whl (289.3 kB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ x86-64

orjson-3.7.2-cp39-cp39-manylinux_2_28_x86_64.whl (273.4 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.28+ x86-64

orjson-3.7.2-cp39-cp39-manylinux_2_28_aarch64.whl (250.4 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.28+ ARM64

orjson-3.7.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (256.7 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

orjson-3.7.2-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (246.6 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARMv7l

orjson-3.7.2-cp39-cp39-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (447.0 kB view details)

Uploaded CPython 3.9macOS 10.9+ universal2 (ARM64, x86-64)macOS 10.9+ x86-64macOS 11.0+ ARM64

orjson-3.7.2-cp39-cp39-macosx_10_7_x86_64.whl (261.4 kB view details)

Uploaded CPython 3.9macOS 10.7+ x86-64

orjson-3.7.2-cp38-none-win_amd64.whl (189.3 kB view details)

Uploaded CPython 3.8Windows x86-64

orjson-3.7.2-cp38-cp38-musllinux_1_1_x86_64.whl (289.1 kB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ x86-64

orjson-3.7.2-cp38-cp38-manylinux_2_28_x86_64.whl (273.3 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.28+ x86-64

orjson-3.7.2-cp38-cp38-manylinux_2_28_aarch64.whl (250.4 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.28+ ARM64

orjson-3.7.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (256.6 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

orjson-3.7.2-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (246.7 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARMv7l

orjson-3.7.2-cp38-cp38-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (447.0 kB view details)

Uploaded CPython 3.8macOS 10.9+ universal2 (ARM64, x86-64)macOS 10.9+ x86-64macOS 11.0+ ARM64

orjson-3.7.2-cp38-cp38-macosx_10_7_x86_64.whl (261.2 kB view details)

Uploaded CPython 3.8macOS 10.7+ x86-64

orjson-3.7.2-cp37-none-win_amd64.whl (189.3 kB view details)

Uploaded CPython 3.7Windows x86-64

orjson-3.7.2-cp37-cp37m-musllinux_1_1_x86_64.whl (289.3 kB view details)

Uploaded CPython 3.7mmusllinux: musl 1.1+ x86-64

orjson-3.7.2-cp37-cp37m-manylinux_2_28_x86_64.whl (273.4 kB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.28+ x86-64

orjson-3.7.2-cp37-cp37m-manylinux_2_28_aarch64.whl (250.2 kB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.28+ ARM64

orjson-3.7.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (256.6 kB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

orjson-3.7.2-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (246.8 kB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ ARMv7l

orjson-3.7.2-cp37-cp37m-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (446.9 kB view details)

Uploaded CPython 3.7mmacOS 10.9+ universal2 (ARM64, x86-64)macOS 10.9+ x86-64macOS 11.0+ ARM64

orjson-3.7.2-cp37-cp37m-macosx_10_7_x86_64.whl (261.3 kB view details)

Uploaded CPython 3.7mmacOS 10.7+ x86-64

File details

Details for the file orjson-3.7.2.tar.gz.

File metadata

  • Download URL: orjson-3.7.2.tar.gz
  • Upload date:
  • Size: 639.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.12.19

File hashes

Hashes for orjson-3.7.2.tar.gz
Algorithm Hash digest
SHA256 1cf9690a0b7c51a988221376741a31087bc1dc2ac327bb2dde919806dfa59444
MD5 8933182ff7fca93f39f3b1c37809f13e
BLAKE2b-256 bb2490259053c33b5c5c0892869dcccaac45a88e108fe64a9fed004e56292502

See more details on using hashes here.

File details

Details for the file orjson-3.7.2-cp310-none-win_amd64.whl.

File metadata

  • Download URL: orjson-3.7.2-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 189.5 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.12.19

File hashes

Hashes for orjson-3.7.2-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 4c686cbb73ccce02929dd799427897f0a0b2dd597d2f5b6b434917ecc3774146
MD5 fb8da1dea7fc535cd91d52197c34762e
BLAKE2b-256 28c7aec4fd36a12753a2f2d6768a7a47ef17dddd6ec29f8155ff937f21131a1b

See more details on using hashes here.

File details

Details for the file orjson-3.7.2-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.7.2-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 14bc727f41ce0dd93d1a6a9fc06076e2401e71b00d0bf107bf64d88d2d963b77
MD5 b6947250263cd7c4f1f58f7e34f1d6a0
BLAKE2b-256 f960edf361343e037a12eebef405ad47aa303acb326127060a066425f8071bb1

See more details on using hashes here.

File details

Details for the file orjson-3.7.2-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.7.2-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 34a67d810dbcec77d00d764ab730c5bbb0bee1d75a037c8d8e981506e8fba560
MD5 f17847b3cd95efac6fdef1351549a5d4
BLAKE2b-256 439ee535fc5d5257c10a79cabd52f4642e6f626a376136e8604eac81d7c10ba4

See more details on using hashes here.

File details

Details for the file orjson-3.7.2-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for orjson-3.7.2-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 26306d988401cc34ac94dd38873b8c0384276a5ad80cdf50e266e06083284975
MD5 6c322f8db720c6a800c6d1db5691bc9c
BLAKE2b-256 19bc72a7a0aacb10e90d552a07807b60ce2756f28ad6b64f984b264c5291aa06

See more details on using hashes here.

File details

Details for the file orjson-3.7.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.7.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 99bb2127ee174dd6e68255db26dbef0bd6c4330377a17867ecfa314d47bfac82
MD5 5a450d81a8b8054daa019657e67a751f
BLAKE2b-256 4338a039849217b6e9eef61ed09702d6c9379ea9d0c9eb3b6edd20cba99e3bd6

See more details on using hashes here.

File details

Details for the file orjson-3.7.2-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for orjson-3.7.2-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 e4b70bb1f746a9c9afb1f861a0496920b5833ff06f9d1b25b6a7d292cb7e8a06
MD5 8305df2d78860ab5ddf5c74195af1fb0
BLAKE2b-256 a5459b6d1e05b1e0be943515600a512f55f8fb18787d51da685cab3fdf5ddeb0

See more details on using hashes here.

File details

Details for the file orjson-3.7.2-cp310-cp310-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for orjson-3.7.2-cp310-cp310-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 6e6fc60775bb0a050846710c4a110e8ad17f41e443ff9d0d05145d8f3a74b577
MD5 497a23498d42a11de919c61da1814af7
BLAKE2b-256 c0fe94a090272bfc7113ef267522915cb7e9259fb1463c4dd35e468b978bd7cb

See more details on using hashes here.

File details

Details for the file orjson-3.7.2-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.7.2-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 4c6bdb0a7dfe53cca965a40371c7b8e72a0441c8bc4949c9015600f1c7fae408
MD5 635875019b75bfc77c551e380e109068
BLAKE2b-256 6e3057b011427a904d70aa527f93bc40b4cc9f76ffd634c1e8d5db5a02bea8e5

See more details on using hashes here.

File details

Details for the file orjson-3.7.2-cp39-none-win_amd64.whl.

File metadata

  • Download URL: orjson-3.7.2-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 189.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.12.19

File hashes

Hashes for orjson-3.7.2-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 796914f7463277d371402775536fb461948c0d34a67d20a57dc4ec49a48a8613
MD5 6d6af170c902652b2ae655eea0620ca3
BLAKE2b-256 3d789919a7111876278e3c54d51508d1b64c09760d8806c13471a14db5e13ec4

See more details on using hashes here.

File details

Details for the file orjson-3.7.2-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.7.2-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d3ae3ed52c875ce1a6c607f852ca177057445289895483b0247f0dc57b481241
MD5 4ad31386779992e1dc07a7d51f092fe8
BLAKE2b-256 266c5664d04b87a6a62e6993c17becc2e605035c1facf4e4c716a9e3bb463334

See more details on using hashes here.

File details

Details for the file orjson-3.7.2-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.7.2-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 299a743576aaa04f5c7994010608f96df5d4a924d584a686c6e263cee732cb00
MD5 af2193607a9b8c8cc6eee12b1f71e085
BLAKE2b-256 c4b6d77774584b9696094c0332a0b228eaea05b38e5ad2db1f70c3959d7ffce4

See more details on using hashes here.

File details

Details for the file orjson-3.7.2-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for orjson-3.7.2-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 3ff49c219b30d715c8baae17c7c5839fe3f2c2db10a66c61d6b91bda80bf8789
MD5 b67cd0affa93ac0e2bb95368f38ba64b
BLAKE2b-256 b2c95e81b3f2e774dfa540cff2a6c03be59b20409b3032d9abb1e134c2ec7d6e

See more details on using hashes here.

File details

Details for the file orjson-3.7.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.7.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a82089ec9e1f7e9b992ff5ab98b4c3c2f98e7bbfdc6fadbef046c5aaafec2b54
MD5 1d6384a14f97921e268b91489909a407
BLAKE2b-256 18d449091d3bb50dd897875bd7d50e76f416e536afe0ee3ffe516c8910125dde

See more details on using hashes here.

File details

Details for the file orjson-3.7.2-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for orjson-3.7.2-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 7e197e6779b230e74333e06db804ff876b27306470f68692ec70c27310e7366f
MD5 ee91ef9ea11cd843c401af001987a62b
BLAKE2b-256 4ea8a0e8a6b11f93c430c55e7e57297f45a3bb8a3d0ddb8813a042a875b6c6a3

See more details on using hashes here.

File details

Details for the file orjson-3.7.2-cp39-cp39-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for orjson-3.7.2-cp39-cp39-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 c589d00b4fb0777f222b35925e4fa030c4777f16d1623669f44bdc191570be66
MD5 bea488e73f395d732be962edad222df4
BLAKE2b-256 a79e9472a1cf3434dd5b65e6983531e2376cdee50b97f29c97c3b145ffd5ec2c

See more details on using hashes here.

File details

Details for the file orjson-3.7.2-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.7.2-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 b705132b2827d33291684067cca6baa451a499b459e46761d30fcf4d6ce21a9a
MD5 88a5ca4e73aa9450c787c2638c29178e
BLAKE2b-256 e0afccf1daa767ac798bac5d47aedbaea364731ea67df9b2a64dd73350bb7fbe

See more details on using hashes here.

File details

Details for the file orjson-3.7.2-cp38-none-win_amd64.whl.

File metadata

  • Download URL: orjson-3.7.2-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 189.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.12.19

File hashes

Hashes for orjson-3.7.2-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 b0f4e92bdfe86a0da57028e669bc1f50f48d810ef6f661e63dc6593c450314bf
MD5 941f3c44a6e4ac87b000783b2c6d95da
BLAKE2b-256 15b8f5dda80e1582f742b6066d88f662414ba8b0da9e0910001b1123a5f6646b

See more details on using hashes here.

File details

Details for the file orjson-3.7.2-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.7.2-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2d90ca4e74750c7adfb7708deb096f835f7e6c4b892bdf703fe871565bb04ad7
MD5 4e10380a3da083da3c2db9954b15baed
BLAKE2b-256 5c68512bb88d31497fd770ab1d09ca1fa09a756d49e41096099cb32421707f1a

See more details on using hashes here.

File details

Details for the file orjson-3.7.2-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.7.2-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 b0b2483f8ad1f93ae4aa43bcf6a985e6ec278e931d0118bae605ffd811b614a1
MD5 c01db7c46cb1d5cc91a68b65b0ba8312
BLAKE2b-256 607030b0c228e1abedc5b56a9c964a4a0fa133a69b5fcb7f064919de77d671ef

See more details on using hashes here.

File details

Details for the file orjson-3.7.2-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for orjson-3.7.2-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 9778a7ec4c72d6814f1e116591f351404a4df2e1dc52d282ff678781f45b509b
MD5 2ba86fc38f0ef01b3007805773eb4ca7
BLAKE2b-256 5af38f01742a430536c97598c79c55f8c0ef274d791e21f129ef69d654372ae7

See more details on using hashes here.

File details

Details for the file orjson-3.7.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.7.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 891640d332c8c7a1478ea6d13b676d239dc86451afa46000c4e8d0990a0d72dd
MD5 0f8ba9888801ce93e88d6a29fdd388e8
BLAKE2b-256 f931b359501bb5578599133900a35b00cc6d1f68261c91a7b6b56f6663d7b4ee

See more details on using hashes here.

File details

Details for the file orjson-3.7.2-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for orjson-3.7.2-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 fbd3b46ac514cbe29ecebcee3882383022acf84aa4d3338f26d068c6fbdf56a0
MD5 4128d11ac4d96b8a41df8aeb1c88d99b
BLAKE2b-256 d0d0c96837facf79b64686b698903df86fdab781837ef170a177d52b52b8cb83

See more details on using hashes here.

File details

Details for the file orjson-3.7.2-cp38-cp38-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for orjson-3.7.2-cp38-cp38-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 54a1e4e39c89d37d3dbc74dde36d09eebcde365ec6803431af9c86604bbbaf3a
MD5 7bf48bd94706beb4e6a815316846903c
BLAKE2b-256 52ec563ba1477b5472c41c8161e1f95585f409c93e18231ca418b298f86e2556

See more details on using hashes here.

File details

Details for the file orjson-3.7.2-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.7.2-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 19eb800811a53efc7111ff7536079fb2f62da7098df0a42756ba91e7bdd01aff
MD5 153143bcf6c9d63e55326471b96e0d14
BLAKE2b-256 d5b5e997da9a9fc456f2c3cb7cd4dc2b41a17b1068966aff10a26040bd10c565

See more details on using hashes here.

File details

Details for the file orjson-3.7.2-cp37-none-win_amd64.whl.

File metadata

  • Download URL: orjson-3.7.2-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 189.3 kB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.12.19

File hashes

Hashes for orjson-3.7.2-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 662bda15edf4d25d520945660873e730e3a6d9975041ba9c32f0ce93b632ee0d
MD5 4b85c0082644d22eced1a99d3c159dfd
BLAKE2b-256 9c5b70e755e441d45456033774fac6dc5d2b020f7c269cdab963c608e7d7e0e5

See more details on using hashes here.

File details

Details for the file orjson-3.7.2-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.7.2-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8ac61c5c98cbcdcf7a3d0a4b62c873bbd9a996a69eaa44f8356a9e10aa29ef49
MD5 3ecad075d96d578e5870ff8e0970f12e
BLAKE2b-256 ce4abf68165dc6283d9400ec42e87bc5bb32241465d7d18c5b726d7861a14db0

See more details on using hashes here.

File details

Details for the file orjson-3.7.2-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.7.2-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 590bc5f33e54eb2261de65e4026876e57d04437bab8dcade9514557e31d84537
MD5 ee6e232338e60ef71c9d66a8399361e0
BLAKE2b-256 3e4d1cda09a2e2a5b67c09aee1686e9dc1bbd782cb76ea4acedadc29e1df84bd

See more details on using hashes here.

File details

Details for the file orjson-3.7.2-cp37-cp37m-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for orjson-3.7.2-cp37-cp37m-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 b2b660790b0804624c569ddb8ca9d31bac6f94f880fd54b8cdff4198735a9fec
MD5 d0fefea6ac0ae0892b11f7b75fbbee8b
BLAKE2b-256 b2b607ea5ae02c7043ddfa33ead1e055ef27e0910ff98cac08663821ceb5ac92

See more details on using hashes here.

File details

Details for the file orjson-3.7.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.7.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f735999d49e2fff2c9812f1ea330b368349f77726894e2a06d17371e61d771bb
MD5 59e210e20412436454c1d512e9a89199
BLAKE2b-256 d1a8f2b95fc23e4cb3dc7870b4c8f4983a756422aa49bec3d502ca359746186f

See more details on using hashes here.

File details

Details for the file orjson-3.7.2-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for orjson-3.7.2-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 54cfa4d915a98209366dcf500ee5c3f66408cc9e2b4fd777c8508f69a8f519a1
MD5 69fcf247a27c77bba1246df2045f67af
BLAKE2b-256 aed177f2d1f278ccf471b64d595e1f66e975a02aab28fc6af46eddfa83e99f56

See more details on using hashes here.

File details

Details for the file orjson-3.7.2-cp37-cp37m-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for orjson-3.7.2-cp37-cp37m-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 993550e6e451a2b71435142d4824a09f8db80d497abae23dc9f3fe62b6ca24c0
MD5 3d324abceed49e7777904c74f5ad932e
BLAKE2b-256 36a47e437ea42c1772d464ae1698fed84ade76453a2e56545ff22f21c9f6799d

See more details on using hashes here.

File details

Details for the file orjson-3.7.2-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.7.2-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 12eb683ddbdddd6847ca2b3b074f42574afc0fbf1aff33d8fdf3a4329167762a
MD5 68bbe488c0ef6d11262a48dfb0d7aba0
BLAKE2b-256 097aca6e5173b22154830751e1bbf6d65498fbe352c2118c3dd405250e4f267f

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page