Skip to main content

Fast, correct Python JSON library supporting dataclasses, datetimes, and numpy

Project description

orjson

orjson is a fast, correct JSON library for Python. It benchmarks as the fastest Python library for JSON and is more correct than the standard json library or other third-party libraries. It serializes dataclass, datetime, numpy, and UUID instances natively.

Its features and drawbacks compared to other Python JSON libraries:

  • serializes dataclass instances 40-50x as fast as other libraries
  • serializes datetime, date, and time instances to RFC 3339 format, e.g., "1970-01-01T00:00:00+00:00"
  • serializes numpy.ndarray instances 4-12x as fast with 0.3x the memory usage of other libraries
  • pretty prints 10x to 20x as fast as the standard library
  • serializes to bytes rather than str, i.e., is not a drop-in replacement
  • serializes str without escaping unicode to ASCII, e.g., "好" rather than "\\u597d"
  • serializes float 10x as fast and deserializes twice as fast as other libraries
  • serializes subclasses of str, int, list, and dict natively, requiring default to specify how to serialize others
  • serializes arbitrary types using a default hook
  • has strict UTF-8 conformance, more correct than the standard library
  • has strict JSON conformance in not supporting Nan/Infinity/-Infinity
  • has an option for strict JSON conformance on 53-bit integers with default support for 64-bit
  • does not provide load() or dump() functions for reading from/writing to file-like objects

orjson supports CPython 3.7, 3.8, 3.9, 3.10, and 3.11. It distributes x86_64/amd64, aarch64/armv8, arm7, POWER/ppc64le, and s390x wheels for Linux, amd64 and aarch64 wheels for macOS, and amd64 wheels for Windows. orjson does not support PyPy. Releases follow semantic versioning and serializing a new object type without an opt-in flag is considered a breaking change.

orjson is licensed under both the Apache 2.0 and MIT licenses. The repository and issue tracker is github.com/ijl/orjson, and patches may be submitted there. There is a CHANGELOG available in the repository.

  1. Usage
    1. Install
    2. Quickstart
    3. Migrating
    4. Serialize
      1. default
      2. option
      3. Fragment
    5. Deserialize
  2. Types
    1. dataclass
    2. datetime
    3. enum
    4. float
    5. int
    6. numpy
    7. str
    8. uuid
  3. Testing
  4. Performance
    1. Latency
    2. Memory
    3. Reproducing
  5. Questions
  6. Packaging
  7. License

Usage

Install

To install a wheel from PyPI:

pip install --upgrade "pip>=20.3" # manylinux_x_y, universal2 wheel support
pip install --upgrade orjson

To build a wheel, see packaging.

Quickstart

This is an example of serializing, with options specified, and deserializing:

>>> import orjson, datetime, numpy
>>> data = {
    "type": "job",
    "created_at": datetime.datetime(1970, 1, 1),
    "status": "🆗",
    "payload": numpy.array([[1, 2], [3, 4]]),
}
>>> orjson.dumps(data, option=orjson.OPT_NAIVE_UTC | orjson.OPT_SERIALIZE_NUMPY)
b'{"type":"job","created_at":"1970-01-01T00:00:00+00:00","status":"\xf0\x9f\x86\x97","payload":[[1,2],[3,4]]}'
>>> orjson.loads(_)
{'type': 'job', 'created_at': '1970-01-01T00:00:00+00:00', 'status': '🆗', 'payload': [[1, 2], [3, 4]]}

Migrating

orjson version 3 serializes more types than version 2. Subclasses of str, int, dict, and list are now serialized. This is faster and more similar to the standard library. It can be disabled with orjson.OPT_PASSTHROUGH_SUBCLASS.dataclasses.dataclass instances are now serialized by default and cannot be customized in a default function unless option=orjson.OPT_PASSTHROUGH_DATACLASS is specified. uuid.UUID instances are serialized by default. For any type that is now serialized, implementations in a default function and options enabling them can be removed but do not need to be. There was no change in deserialization.

To migrate from the standard library, the largest difference is that orjson.dumps returns bytes and json.dumps returns a str. Users with dict objects using non-str keys should specify option=orjson.OPT_NON_STR_KEYS. sort_keys is replaced by option=orjson.OPT_SORT_KEYS. indent is replaced by option=orjson.OPT_INDENT_2 and other levels of indentation are not supported.

Serialize

def dumps(
    __obj: Any,
    default: Optional[Callable[[Any], Any]] = ...,
    option: Optional[int] = ...,
) -> bytes: ...

dumps() serializes Python objects to JSON.

It natively serializes str, dict, list, tuple, int, float, bool, None, dataclasses.dataclass, typing.TypedDict, datetime.datetime, datetime.date, datetime.time, uuid.UUID, numpy.ndarray, and orjson.Fragment instances. It supports arbitrary types through default. It serializes subclasses of str, int, dict, list, dataclasses.dataclass, and enum.Enum. It does not serialize subclasses of tuple to avoid serializing namedtuple objects as arrays. To avoid serializing subclasses, specify the option orjson.OPT_PASSTHROUGH_SUBCLASS.

The output is a bytes object containing UTF-8.

The global interpreter lock (GIL) is held for the duration of the call.

It raises JSONEncodeError on an unsupported type. This exception message describes the invalid object with the error message Type is not JSON serializable: .... To fix this, specify default.

It raises JSONEncodeError on a str that contains invalid UTF-8.

It raises JSONEncodeError on an integer that exceeds 64 bits by default or, with OPT_STRICT_INTEGER, 53 bits.

It raises JSONEncodeError if a dict has a key of a type other than str, unless OPT_NON_STR_KEYS is specified.

It raises JSONEncodeError if the output of default recurses to handling by default more than 254 levels deep.

It raises JSONEncodeError on circular references.

It raises JSONEncodeError if a tzinfo on a datetime object is unsupported.

JSONEncodeError is a subclass of TypeError. This is for compatibility with the standard library.

If the failure was caused by an exception in default then JSONEncodeError chains the original exception as __cause__.

default

To serialize a subclass or arbitrary types, specify default as a callable that returns a supported type. default may be a function, lambda, or callable class instance. To specify that a type was not handled by default, raise an exception such as TypeError.

>>> import orjson, decimal
>>>
def default(obj):
    if isinstance(obj, decimal.Decimal):
        return str(obj)
    raise TypeError

>>> orjson.dumps(decimal.Decimal("0.0842389659712649442845"))
JSONEncodeError: Type is not JSON serializable: decimal.Decimal
>>> orjson.dumps(decimal.Decimal("0.0842389659712649442845"), default=default)
b'"0.0842389659712649442845"'
>>> orjson.dumps({1, 2}, default=default)
orjson.JSONEncodeError: Type is not JSON serializable: set

The default callable may return an object that itself must be handled by default up to 254 times before an exception is raised.

It is important that default raise an exception if a type cannot be handled. Python otherwise implicitly returns None, which appears to the caller like a legitimate value and is serialized:

>>> import orjson, json, rapidjson
>>>
def default(obj):
    if isinstance(obj, decimal.Decimal):
        return str(obj)

>>> orjson.dumps({"set":{1, 2}}, default=default)
b'{"set":null}'
>>> json.dumps({"set":{1, 2}}, default=default)
'{"set":null}'
>>> rapidjson.dumps({"set":{1, 2}}, default=default)
'{"set":null}'

option

To modify how data is serialized, specify option. Each option is an integer constant in orjson. To specify multiple options, mask them together, e.g., option=orjson.OPT_STRICT_INTEGER | orjson.OPT_NAIVE_UTC.

OPT_APPEND_NEWLINE

Append \n to the output. This is a convenience and optimization for the pattern of dumps(...) + "\n". bytes objects are immutable and this pattern copies the original contents.

>>> import orjson
>>> orjson.dumps([])
b"[]"
>>> orjson.dumps([], option=orjson.OPT_APPEND_NEWLINE)
b"[]\n"
OPT_INDENT_2

Pretty-print output with an indent of two spaces. This is equivalent to indent=2 in the standard library. Pretty printing is slower and the output larger. orjson is the fastest compared library at pretty printing and has much less of a slowdown to pretty print than the standard library does. This option is compatible with all other options.

>>> import orjson
>>> orjson.dumps({"a": "b", "c": {"d": True}, "e": [1, 2]})
b'{"a":"b","c":{"d":true},"e":[1,2]}'
>>> orjson.dumps(
    {"a": "b", "c": {"d": True}, "e": [1, 2]},
    option=orjson.OPT_INDENT_2
)
b'{\n  "a": "b",\n  "c": {\n    "d": true\n  },\n  "e": [\n    1,\n    2\n  ]\n}'

If displayed, the indentation and linebreaks appear like this:

{
  "a": "b",
  "c": {
    "d": true
  },
  "e": [
    1,
    2
  ]
}

This measures serializing the github.json fixture as compact (52KiB) or pretty (64KiB):

Library compact (ms) pretty (ms) vs. orjson
orjson 0.03 0.04 1
ujson 0.18 0.19 4.6
rapidjson 0.1 0.12 2.9
simplejson 0.25 0.89 21.4
json 0.18 0.71 17

This measures serializing the citm_catalog.json fixture, more of a worst case due to the amount of nesting and newlines, as compact (489KiB) or pretty (1.1MiB):

Library compact (ms) pretty (ms) vs. orjson
orjson 0.59 0.71 1
ujson 2.9 3.59 5
rapidjson 1.81 2.8 3.9
simplejson 10.43 42.13 59.1
json 4.16 33.42 46.9

This can be reproduced using the pyindent script.

OPT_NAIVE_UTC

Serialize datetime.datetime objects without a tzinfo as UTC. This has no effect on datetime.datetime objects that have tzinfo set.

>>> import orjson, datetime
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0),
    )
b'"1970-01-01T00:00:00"'
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0),
        option=orjson.OPT_NAIVE_UTC,
    )
b'"1970-01-01T00:00:00+00:00"'
OPT_NON_STR_KEYS

Serialize dict keys of type other than str. This allows dict keys to be one of str, int, float, bool, None, datetime.datetime, datetime.date, datetime.time, enum.Enum, and uuid.UUID. For comparison, the standard library serializes str, int, float, bool or None by default. orjson benchmarks as being faster at serializing non-str keys than other libraries. This option is slower for str keys than the default.

>>> import orjson, datetime, uuid
>>> orjson.dumps(
        {uuid.UUID("7202d115-7ff3-4c81-a7c1-2a1f067b1ece"): [1, 2, 3]},
        option=orjson.OPT_NON_STR_KEYS,
    )
b'{"7202d115-7ff3-4c81-a7c1-2a1f067b1ece":[1,2,3]}'
>>> orjson.dumps(
        {datetime.datetime(1970, 1, 1, 0, 0, 0): [1, 2, 3]},
        option=orjson.OPT_NON_STR_KEYS | orjson.OPT_NAIVE_UTC,
    )
b'{"1970-01-01T00:00:00+00:00":[1,2,3]}'

These types are generally serialized how they would be as values, e.g., datetime.datetime is still an RFC 3339 string and respects options affecting it. The exception is that int serialization does not respect OPT_STRICT_INTEGER.

This option has the risk of creating duplicate keys. This is because non-str objects may serialize to the same str as an existing key, e.g., {"1": true, 1: false}. The last key to be inserted to the dict will be serialized last and a JSON deserializer will presumably take the last occurrence of a key (in the above, false). The first value will be lost.

This option is compatible with orjson.OPT_SORT_KEYS. If sorting is used, note the sort is unstable and will be unpredictable for duplicate keys.

>>> import orjson, datetime
>>> orjson.dumps(
    {"other": 1, datetime.date(1970, 1, 5): 2, datetime.date(1970, 1, 3): 3},
    option=orjson.OPT_NON_STR_KEYS | orjson.OPT_SORT_KEYS
)
b'{"1970-01-03":3,"1970-01-05":2,"other":1}'

This measures serializing 589KiB of JSON comprising a list of 100 dict in which each dict has both 365 randomly-sorted int keys representing epoch timestamps as well as one str key and the value for each key is a single integer. In "str keys", the keys were converted to str before serialization, and orjson still specifes option=orjson.OPT_NON_STR_KEYS (which is always somewhat slower).

Library str keys (ms) int keys (ms) int keys sorted (ms)
orjson 1.53 2.16 4.29
ujson 3.07 5.65
rapidjson 4.29
simplejson 11.24 14.50 21.86
json 7.17 8.49

ujson is blank for sorting because it segfaults. json is blank because it raises TypeError on attempting to sort before converting all keys to str. rapidjson is blank because it does not support non-str keys. This can be reproduced using the pynonstr script.

OPT_OMIT_MICROSECONDS

Do not serialize the microsecond field on datetime.datetime and datetime.time instances.

>>> import orjson, datetime
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0, 1),
    )
b'"1970-01-01T00:00:00.000001"'
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0, 1),
        option=orjson.OPT_OMIT_MICROSECONDS,
    )
b'"1970-01-01T00:00:00"'
OPT_PASSTHROUGH_DATACLASS

Passthrough dataclasses.dataclass instances to default. This allows customizing their output but is much slower.

>>> import orjson, dataclasses
>>>
@dataclasses.dataclass
class User:
    id: str
    name: str
    password: str

def default(obj):
    if isinstance(obj, User):
        return {"id": obj.id, "name": obj.name}
    raise TypeError

>>> orjson.dumps(User("3b1", "asd", "zxc"))
b'{"id":"3b1","name":"asd","password":"zxc"}'
>>> orjson.dumps(User("3b1", "asd", "zxc"), option=orjson.OPT_PASSTHROUGH_DATACLASS)
TypeError: Type is not JSON serializable: User
>>> orjson.dumps(
        User("3b1", "asd", "zxc"),
        option=orjson.OPT_PASSTHROUGH_DATACLASS,
        default=default,
    )
b'{"id":"3b1","name":"asd"}'
OPT_PASSTHROUGH_DATETIME

Passthrough datetime.datetime, datetime.date, and datetime.time instances to default. This allows serializing datetimes to a custom format, e.g., HTTP dates:

>>> import orjson, datetime
>>>
def default(obj):
    if isinstance(obj, datetime.datetime):
        return obj.strftime("%a, %d %b %Y %H:%M:%S GMT")
    raise TypeError

>>> orjson.dumps({"created_at": datetime.datetime(1970, 1, 1)})
b'{"created_at":"1970-01-01T00:00:00"}'
>>> orjson.dumps({"created_at": datetime.datetime(1970, 1, 1)}, option=orjson.OPT_PASSTHROUGH_DATETIME)
TypeError: Type is not JSON serializable: datetime.datetime
>>> orjson.dumps(
        {"created_at": datetime.datetime(1970, 1, 1)},
        option=orjson.OPT_PASSTHROUGH_DATETIME,
        default=default,
    )
b'{"created_at":"Thu, 01 Jan 1970 00:00:00 GMT"}'

This does not affect datetimes in dict keys if using OPT_NON_STR_KEYS.

OPT_PASSTHROUGH_SUBCLASS

Passthrough subclasses of builtin types to default.

>>> import orjson
>>>
class Secret(str):
    pass

def default(obj):
    if isinstance(obj, Secret):
        return "******"
    raise TypeError

>>> orjson.dumps(Secret("zxc"))
b'"zxc"'
>>> orjson.dumps(Secret("zxc"), option=orjson.OPT_PASSTHROUGH_SUBCLASS)
TypeError: Type is not JSON serializable: Secret
>>> orjson.dumps(Secret("zxc"), option=orjson.OPT_PASSTHROUGH_SUBCLASS, default=default)
b'"******"'

This does not affect serializing subclasses as dict keys if using OPT_NON_STR_KEYS.

OPT_SERIALIZE_DATACLASS

This is deprecated and has no effect in version 3. In version 2 this was required to serialize dataclasses.dataclass instances. For more, see dataclass.

OPT_SERIALIZE_NUMPY

Serialize numpy.ndarray instances. For more, see numpy.

OPT_SERIALIZE_UUID

This is deprecated and has no effect in version 3. In version 2 this was required to serialize uuid.UUID instances. For more, see UUID.

OPT_SORT_KEYS

Serialize dict keys in sorted order. The default is to serialize in an unspecified order. This is equivalent to sort_keys=True in the standard library.

This can be used to ensure the order is deterministic for hashing or tests. It has a substantial performance penalty and is not recommended in general.

>>> import orjson
>>> orjson.dumps({"b": 1, "c": 2, "a": 3})
b'{"b":1,"c":2,"a":3}'
>>> orjson.dumps({"b": 1, "c": 2, "a": 3}, option=orjson.OPT_SORT_KEYS)
b'{"a":3,"b":1,"c":2}'

This measures serializing the twitter.json fixture unsorted and sorted:

Library unsorted (ms) sorted (ms) vs. orjson
orjson 0.32 0.54 1
ujson 1.6 2.07 3.8
rapidjson 1.12 1.65 3.1
simplejson 2.25 3.13 5.8
json 1.78 2.32 4.3

The benchmark can be reproduced using the pysort script.

The sorting is not collation/locale-aware:

>>> import orjson
>>> orjson.dumps({"a": 1, "ä": 2, "A": 3}, option=orjson.OPT_SORT_KEYS)
b'{"A":3,"a":1,"\xc3\xa4":2}'

This is the same sorting behavior as the standard library, rapidjson, simplejson, and ujson.

dataclass also serialize as maps but this has no effect on them.

OPT_STRICT_INTEGER

Enforce 53-bit limit on integers. The limit is otherwise 64 bits, the same as the Python standard library. For more, see int.

OPT_UTC_Z

Serialize a UTC timezone on datetime.datetime instances as Z instead of +00:00.

>>> import orjson, datetime, zoneinfo
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=zoneinfo.ZoneInfo("UTC")),
    )
b'"1970-01-01T00:00:00+00:00"'
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=zoneinfo.ZoneInfo("UTC")),
        option=orjson.OPT_UTC_Z
    )
b'"1970-01-01T00:00:00Z"'

Fragment

orjson.Fragment includes already-serialized JSON in a document. This is an efficient way include JSON blobs from a cache, JSONB field, or separately serialized object without first deserializing to Python objects via loads().

>>> import orjson
>>> orjson.dumps({"key": "zxc", "data": orjson.Fragment(b'{"a": "b", "c": 1}')})
b'{"key":"zxc","data":{"a": "b", "c": 1}}'

It does no reformatting: orjson.OPT_INDENT_2 will not affect a compact blob nor will a pretty-printed JSON blob be rewritten as compact.

The input must be bytes or str and given as a positional argument.

This raises orjson.JSONEncodeError if a str is given and the input is not valid UTF-8. It otherwise does no validation and it is possible to write invalid JSON. This does not escape characters. The implementation is tested to not crash if given invalid strings or invalid JSON.

This is similar to RawJSON in rapidjson.

Deserialize

def loads(__obj: Union[bytes, bytearray, memoryview, str]) -> Any: ...

loads() deserializes JSON to Python objects. It deserializes to dict, list, int, float, str, bool, and None objects.

bytes, bytearray, memoryview, and str input are accepted. If the input exists as a memoryview, bytearray, or bytes object, it is recommended to pass these directly rather than creating an unnecessary str object. That is, orjson.loads(b"{}") instead of orjson.loads(b"{}".decode("utf-8")). This has lower memory usage and lower latency.

The input must be valid UTF-8.

orjson maintains a cache of map keys for the duration of the process. This causes a net reduction in memory usage by avoiding duplicate strings. The keys must be at most 64 bytes to be cached and 1024 entries are stored.

The global interpreter lock (GIL) is held for the duration of the call.

It raises JSONDecodeError if given an invalid type or invalid JSON. This includes if the input contains NaN, Infinity, or -Infinity, which the standard library allows, but is not valid JSON.

JSONDecodeError is a subclass of json.JSONDecodeError and ValueError. This is for compatibility with the standard library.

Types

dataclass

orjson serializes instances of dataclasses.dataclass natively. It serializes instances 40-50x as fast as other libraries and avoids a severe slowdown seen in other libraries compared to serializing dict.

It is supported to pass all variants of dataclasses, including dataclasses using __slots__, frozen dataclasses, those with optional or default attributes, and subclasses. There is a performance benefit to not using __slots__.

Library dict (ms) dataclass (ms) vs. orjson
orjson 1.40 1.60 1
ujson
rapidjson 3.64 68.48 42
simplejson 14.21 92.18 57
json 13.28 94.90 59

This measures serializing 555KiB of JSON, orjson natively and other libraries using default to serialize the output of dataclasses.asdict(). This can be reproduced using the pydataclass script.

Dataclasses are serialized as maps, with every attribute serialized and in the order given on class definition:

>>> import dataclasses, orjson, typing

@dataclasses.dataclass
class Member:
    id: int
    active: bool = dataclasses.field(default=False)

@dataclasses.dataclass
class Object:
    id: int
    name: str
    members: typing.List[Member]

>>> orjson.dumps(Object(1, "a", [Member(1, True), Member(2)]))
b'{"id":1,"name":"a","members":[{"id":1,"active":true},{"id":2,"active":false}]}'

datetime

orjson serializes datetime.datetime objects to RFC 3339 format, e.g., "1970-01-01T00:00:00+00:00". This is a subset of ISO 8601 and is compatible with isoformat() in the standard library.

>>> import orjson, datetime, zoneinfo
>>> orjson.dumps(
    datetime.datetime(2018, 12, 1, 2, 3, 4, 9, tzinfo=zoneinfo.ZoneInfo("Australia/Adelaide"))
)
b'"2018-12-01T02:03:04.000009+10:30"'
>>> orjson.dumps(
    datetime.datetime(2100, 9, 1, 21, 55, 2).replace(tzinfo=zoneinfo.ZoneInfo("UTC"))
)
b'"2100-09-01T21:55:02+00:00"'
>>> orjson.dumps(
    datetime.datetime(2100, 9, 1, 21, 55, 2)
)
b'"2100-09-01T21:55:02"'

datetime.datetime supports instances with a tzinfo that is None, datetime.timezone.utc, a timezone instance from the python3.9+ zoneinfo module, or a timezone instance from the third-party pendulum, pytz, or dateutil/arrow libraries.

It is fastest to use the standard library's zoneinfo.ZoneInfo for timezones.

datetime.time objects must not have a tzinfo.

>>> import orjson, datetime
>>> orjson.dumps(datetime.time(12, 0, 15, 290))
b'"12:00:15.000290"'

datetime.date objects will always serialize.

>>> import orjson, datetime
>>> orjson.dumps(datetime.date(1900, 1, 2))
b'"1900-01-02"'

Errors with tzinfo result in JSONEncodeError being raised.

To disable serialization of datetime objects specify the option orjson.OPT_PASSTHROUGH_DATETIME.

To use "Z" suffix instead of "+00:00" to indicate UTC ("Zulu") time, use the option orjson.OPT_UTC_Z.

To assume datetimes without timezone are UTC, use the option orjson.OPT_NAIVE_UTC.

enum

orjson serializes enums natively. Options apply to their values.

>>> import enum, datetime, orjson
>>>
class DatetimeEnum(enum.Enum):
    EPOCH = datetime.datetime(1970, 1, 1, 0, 0, 0)
>>> orjson.dumps(DatetimeEnum.EPOCH)
b'"1970-01-01T00:00:00"'
>>> orjson.dumps(DatetimeEnum.EPOCH, option=orjson.OPT_NAIVE_UTC)
b'"1970-01-01T00:00:00+00:00"'

Enums with members that are not supported types can be serialized using default:

>>> import enum, orjson
>>>
class Custom:
    def __init__(self, val):
        self.val = val

def default(obj):
    if isinstance(obj, Custom):
        return obj.val
    raise TypeError

class CustomEnum(enum.Enum):
    ONE = Custom(1)

>>> orjson.dumps(CustomEnum.ONE, default=default)
b'1'

float

orjson serializes and deserializes double precision floats with no loss of precision and consistent rounding.

orjson.dumps() serializes Nan, Infinity, and -Infinity, which are not compliant JSON, as null:

>>> import orjson, ujson, rapidjson, json
>>> orjson.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
b'[null,null,null]'
>>> ujson.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
OverflowError: Invalid Inf value when encoding double
>>> rapidjson.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
'[NaN,Infinity,-Infinity]'
>>> json.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
'[NaN, Infinity, -Infinity]'

int

orjson serializes and deserializes 64-bit integers by default. The range supported is a signed 64-bit integer's minimum (-9223372036854775807) to an unsigned 64-bit integer's maximum (18446744073709551615). This is widely compatible, but there are implementations that only support 53-bits for integers, e.g., web browsers. For those implementations, dumps() can be configured to raise a JSONEncodeError on values exceeding the 53-bit range.

>>> import orjson
>>> orjson.dumps(9007199254740992)
b'9007199254740992'
>>> orjson.dumps(9007199254740992, option=orjson.OPT_STRICT_INTEGER)
JSONEncodeError: Integer exceeds 53-bit range
>>> orjson.dumps(-9007199254740992, option=orjson.OPT_STRICT_INTEGER)
JSONEncodeError: Integer exceeds 53-bit range

numpy

orjson natively serializes numpy.ndarray and individual numpy.float64, numpy.float32, numpy.int64, numpy.int32, numpy.int16, numpy.int8, numpy.uint64, numpy.uint32, numpy.uint16, numpy.uint8, numpy.uintp, numpy.intp, numpy.datetime64, and numpy.bool instances.

orjson is faster than all compared libraries at serializing numpy instances. Serializing numpy data requires specifying option=orjson.OPT_SERIALIZE_NUMPY.

>>> import orjson, numpy
>>> orjson.dumps(
        numpy.array([[1, 2, 3], [4, 5, 6]]),
        option=orjson.OPT_SERIALIZE_NUMPY,
)
b'[[1,2,3],[4,5,6]]'

The array must be a contiguous C array (C_CONTIGUOUS) and one of the supported datatypes.

Note a difference between serializing numpy.float32 using ndarray.tolist() or orjson.dumps(..., option=orjson.OPT_SERIALIZE_NUMPY): tolist() converts to a double before serializing and orjson's native path does not. This can result in different rounding.

numpy.datetime64 instances are serialized as RFC 3339 strings and datetime options affect them.

>>> import orjson, numpy
>>> orjson.dumps(
        numpy.datetime64("2021-01-01T00:00:00.172"),
        option=orjson.OPT_SERIALIZE_NUMPY,
)
b'"2021-01-01T00:00:00.172000"'
>>> orjson.dumps(
        numpy.datetime64("2021-01-01T00:00:00.172"),
        option=(
            orjson.OPT_SERIALIZE_NUMPY |
            orjson.OPT_NAIVE_UTC |
            orjson.OPT_OMIT_MICROSECONDS
        ),
)
b'"2021-01-01T00:00:00+00:00"'

If an array is not a contiguous C array, contains an unsupported datatype, or contains a numpy.datetime64 using an unsupported representation (e.g., picoseconds), orjson falls through to default. In default, obj.tolist() can be specified. If an array is malformed, which is not expected, orjson.JSONEncodeError is raised.

This measures serializing 92MiB of JSON from an numpy.ndarray with dimensions of (50000, 100) and numpy.float64 values:

Library Latency (ms) RSS diff (MiB) vs. orjson
orjson 194 99 1.0
ujson
rapidjson 3,048 309 15.7
simplejson 3,023 297 15.6
json 3,133 297 16.1

This measures serializing 100MiB of JSON from an numpy.ndarray with dimensions of (100000, 100) and numpy.int32 values:

Library Latency (ms) RSS diff (MiB) vs. orjson
orjson 178 115 1.0
ujson
rapidjson 1,512 551 8.5
simplejson 1,606 504 9.0
json 1,506 503 8.4

This measures serializing 105MiB of JSON from an numpy.ndarray with dimensions of (100000, 200) and numpy.bool values:

Library Latency (ms) RSS diff (MiB) vs. orjson
orjson 157 120 1.0
ujson
rapidjson 710 327 4.5
simplejson 931 398 5.9
json 996 400 6.3

In these benchmarks, orjson serializes natively, ujson is blank because it does not support a default parameter, and the other libraries serialize ndarray.tolist() via default. The RSS column measures peak memory usage during serialization. This can be reproduced using the pynumpy script.

orjson does not have an installation or compilation dependency on numpy. The implementation is independent, reading numpy.ndarray using PyArrayInterface.

str

orjson is strict about UTF-8 conformance. This is stricter than the standard library's json module, which will serialize and deserialize UTF-16 surrogates, e.g., "\ud800", that are invalid UTF-8.

If orjson.dumps() is given a str that does not contain valid UTF-8, orjson.JSONEncodeError is raised. If loads() receives invalid UTF-8, orjson.JSONDecodeError is raised.

orjson and rapidjson are the only compared JSON libraries to consistently error on bad input.

>>> import orjson, ujson, rapidjson, json
>>> orjson.dumps('\ud800')
JSONEncodeError: str is not valid UTF-8: surrogates not allowed
>>> ujson.dumps('\ud800')
UnicodeEncodeError: 'utf-8' codec ...
>>> rapidjson.dumps('\ud800')
UnicodeEncodeError: 'utf-8' codec ...
>>> json.dumps('\ud800')
'"\\ud800"'
>>> orjson.loads('"\\ud800"')
JSONDecodeError: unexpected end of hex escape at line 1 column 8: line 1 column 1 (char 0)
>>> ujson.loads('"\\ud800"')
''
>>> rapidjson.loads('"\\ud800"')
ValueError: Parse error at offset 1: The surrogate pair in string is invalid.
>>> json.loads('"\\ud800"')
'\ud800'

To make a best effort at deserializing bad input, first decode bytes using the replace or lossy argument for errors:

>>> import orjson
>>> orjson.loads(b'"\xed\xa0\x80"')
JSONDecodeError: str is not valid UTF-8: surrogates not allowed
>>> orjson.loads(b'"\xed\xa0\x80"'.decode("utf-8", "replace"))
'���'

uuid

orjson serializes uuid.UUID instances to RFC 4122 format, e.g., "f81d4fae-7dec-11d0-a765-00a0c91e6bf6".

>>> import orjson, uuid
>>> orjson.dumps(uuid.UUID('f81d4fae-7dec-11d0-a765-00a0c91e6bf6'))
b'"f81d4fae-7dec-11d0-a765-00a0c91e6bf6"'
>>> orjson.dumps(uuid.uuid5(uuid.NAMESPACE_DNS, "python.org"))
b'"886313e1-3b8a-5372-9b90-0c9aee199e5d"'

Testing

The library has comprehensive tests. There are tests against fixtures in the JSONTestSuite and nativejson-benchmark repositories. It is tested to not crash against the Big List of Naughty Strings. It is tested to not leak memory. It is tested to not crash against and not accept invalid UTF-8. There are integration tests exercising the library's use in web servers (gunicorn using multiprocess/forked workers) and when multithreaded. It also uses some tests from the ultrajson library.

orjson is the most correct of the compared libraries. This graph shows how each library handles a combined 342 JSON fixtures from the JSONTestSuite and nativejson-benchmark tests:

Library Invalid JSON documents not rejected Valid JSON documents not deserialized
orjson 0 0
ujson 38 0
rapidjson 6 0
simplejson 13 0
json 17 0

This shows that all libraries deserialize valid JSON but only orjson correctly rejects the given invalid JSON fixtures. Errors are largely due to accepting invalid strings and numbers.

The graph above can be reproduced using the pycorrectness script.

Performance

Serialization and deserialization performance of orjson is better than ultrajson, rapidjson, simplejson, or json. The benchmarks are done on fixtures of real data:

  • twitter.json, 631.5KiB, results of a search on Twitter for "一", containing CJK strings, dictionaries of strings and arrays of dictionaries, indented.

  • github.json, 55.8KiB, a GitHub activity feed, containing dictionaries of strings and arrays of dictionaries, not indented.

  • citm_catalog.json, 1.7MiB, concert data, containing nested dictionaries of strings and arrays of integers, indented.

  • canada.json, 2.2MiB, coordinates of the Canadian border in GeoJSON format, containing floats and arrays, indented.

Latency

twitter.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.33 3069.4 1
ujson 1.68 592.8 5.15
rapidjson 1.12 891 3.45
simplejson 2.29 436.2 7.03
json 1.8 556.6 5.52

twitter.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.81 1237.6 1
ujson 1.87 533.9 2.32
rapidjson 2.97 335.8 3.67
simplejson 2.15 463.8 2.66
json 2.45 408.2 3.03

github.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.03 28817.3 1
ujson 0.18 5478.2 5.26
rapidjson 0.1 9686.4 2.98
simplejson 0.26 3901.3 7.39
json 0.18 5437 5.27

github.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.07 15270 1
ujson 0.19 5374.8 2.84
rapidjson 0.17 5854.9 2.59
simplejson 0.15 6707.4 2.27
json 0.16 6397.3 2.39

citm_catalog.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.58 1722.5 1
ujson 2.89 345.6 4.99
rapidjson 1.83 546.4 3.15
simplejson 10.39 95.9 17.89
json 3.93 254.6 6.77

citm_catalog.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 1.76 569.2 1
ujson 3.5 284.3 1.99
rapidjson 5.77 173.2 3.28
simplejson 5.13 194.7 2.92
json 4.99 200.5 2.84

canada.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 3.62 276.3 1
ujson 14.16 70.6 3.91
rapidjson 33.64 29.7 9.29
simplejson 57.46 17.4 15.88
json 35.7 28 9.86

canada.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 3.89 256.6 1
ujson 8.73 114.3 2.24
rapidjson 23.33 42.8 5.99
simplejson 23.99 41.7 6.16
json 21.1 47.4 5.42

Memory

orjson as of 3.7.0 has higher baseline memory usage than other libraries due to a persistent buffer used for parsing. Incremental memory usage when deserializing is similar to the standard library and other third-party libraries.

This measures, in the first column, RSS after importing a library and reading the fixture, and in the second column, increases in RSS after repeatedly calling loads() on the fixture.

twitter.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 21.8 2.8
ujson 14.3 4.8
rapidjson 14.9 4.6
simplejson 13.4 2.4
json 13.1 2.3

github.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 21.2 0.5
ujson 13.6 0.6
rapidjson 14.1 0.5
simplejson 12.5 0.3
json 12.4 0.3

citm_catalog.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 23 10.6
ujson 15.2 11.2
rapidjson 15.8 29.7
simplejson 14.4 24.7
json 13.9 24.7

canada.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 23.2 21.3
ujson 15.6 19.2
rapidjson 16.3 23.4
simplejson 15 21.1
json 14.3 20.9

Reproducing

The above was measured using Python 3.10.5 on Linux (amd64) with orjson 3.7.9, ujson 5.4.0, python-rapidson 1.8, and simplejson 3.17.6.

The latency results can be reproduced using the pybench and graph scripts. The memory results can be reproduced using the pymem script.

Questions

Why can't I install it from PyPI?

Probably pip needs to be upgraded to version 20.3 or later to support the latest manylinux_x_y or universal2 wheel formats.

"Cargo, the Rust package manager, is not installed or is not on PATH."

This happens when there are no binary wheels (like manylinux) for your platform on PyPI. You can install Rust through rustup or a package manager and then it will compile.

Will it deserialize to dataclasses, UUIDs, decimals, etc or support object_hook?

No. This requires a schema specifying what types are expected and how to handle errors etc. This is addressed by data validation libraries a level above this.

Will it serialize to str?

No. bytes is the correct type for a serialized blob.

Will it support PyPy?

Probably not.

Packaging

To package orjson requires at least Rust 1.60 and the maturin build tool. The recommended build command is:

maturin build --release --strip

It benefits from also having a C build environment to compile a faster deserialization backend. See this project's manylinux_2_28 builds for an example using clang and LTO.

The project's own CI tests against nightly-2023-05-31 and stable 1.60. It is prudent to pin the nightly version because that channel can introduce breaking changes.

orjson is tested for amd64, aarch64, arm7, ppc64le, and s390x on Linux. It is tested for amd64 on macOS and cross-compiles for aarch64. For Windows it is tested on amd64.

There are no runtime dependencies other than libc.

The source distribution on PyPI contains all dependencies' source and can be built without network access. The file can be downloaded from https://files.pythonhosted.org/packages/source/o/orjson/orjson-${version}.tar.gz.

orjson's tests are included in the source distribution on PyPI. The requirements to run the tests are specified in test/requirements.txt. The tests should be run as part of the build. It can be run with pytest -q test.

License

orjson was written by ijl <ijl@mailbox.org>, copyright 2018 - 2023, licensed under both the Apache 2 and MIT licenses.

Project details


Release history Release notifications | RSS feed

This version

3.9.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

orjson-3.9.0.tar.gz (4.2 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

orjson-3.9.0-cp311-none-win_amd64.whl (191.7 kB view details)

Uploaded CPython 3.11Windows x86-64

orjson-3.9.0-cp311-cp311-musllinux_1_1_x86_64.whl (305.6 kB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ x86-64

orjson-3.9.0-cp311-cp311-musllinux_1_1_aarch64.whl (312.4 kB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ ARM64

orjson-3.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (137.0 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

orjson-3.9.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (148.1 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ s390x

orjson-3.9.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (144.8 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ppc64le

orjson-3.9.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (127.0 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARMv7l

orjson-3.9.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (265.8 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

orjson-3.9.0-cp311-cp311-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl (240.5 kB view details)

Uploaded CPython 3.11macOS 10.15+ universal2 (ARM64, x86-64)macOS 10.15+ x86-64macOS 11.0+ ARM64

orjson-3.9.0-cp310-none-win_amd64.whl (191.7 kB view details)

Uploaded CPython 3.10Windows x86-64

orjson-3.9.0-cp310-cp310-musllinux_1_1_x86_64.whl (305.6 kB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ x86-64

orjson-3.9.0-cp310-cp310-musllinux_1_1_aarch64.whl (312.4 kB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ ARM64

orjson-3.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (137.0 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

orjson-3.9.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (148.1 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ s390x

orjson-3.9.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (144.8 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ppc64le

orjson-3.9.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (127.0 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARMv7l

orjson-3.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (265.8 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

orjson-3.9.0-cp310-cp310-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl (240.5 kB view details)

Uploaded CPython 3.10macOS 10.15+ universal2 (ARM64, x86-64)macOS 10.15+ x86-64macOS 11.0+ ARM64

orjson-3.9.0-cp39-none-win_amd64.whl (191.7 kB view details)

Uploaded CPython 3.9Windows x86-64

orjson-3.9.0-cp39-cp39-musllinux_1_1_x86_64.whl (305.5 kB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ x86-64

orjson-3.9.0-cp39-cp39-musllinux_1_1_aarch64.whl (312.4 kB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ ARM64

orjson-3.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (136.9 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

orjson-3.9.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (148.1 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ s390x

orjson-3.9.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (144.8 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ppc64le

orjson-3.9.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (127.0 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARMv7l

orjson-3.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (265.7 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

orjson-3.9.0-cp39-cp39-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl (240.5 kB view details)

Uploaded CPython 3.9macOS 10.15+ universal2 (ARM64, x86-64)macOS 10.15+ x86-64macOS 11.0+ ARM64

orjson-3.9.0-cp38-none-win_amd64.whl (191.5 kB view details)

Uploaded CPython 3.8Windows x86-64

orjson-3.9.0-cp38-cp38-musllinux_1_1_x86_64.whl (305.5 kB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ x86-64

orjson-3.9.0-cp38-cp38-musllinux_1_1_aarch64.whl (312.2 kB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ ARM64

orjson-3.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (136.8 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

orjson-3.9.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (148.0 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ s390x

orjson-3.9.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (144.7 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ppc64le

orjson-3.9.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (126.9 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARMv7l

orjson-3.9.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (265.6 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

orjson-3.9.0-cp38-cp38-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl (240.2 kB view details)

Uploaded CPython 3.8macOS 10.15+ universal2 (ARM64, x86-64)macOS 10.15+ x86-64macOS 11.0+ ARM64

orjson-3.9.0-cp37-none-win_amd64.whl (191.5 kB view details)

Uploaded CPython 3.7Windows x86-64

orjson-3.9.0-cp37-cp37m-musllinux_1_1_x86_64.whl (305.5 kB view details)

Uploaded CPython 3.7mmusllinux: musl 1.1+ x86-64

orjson-3.9.0-cp37-cp37m-musllinux_1_1_aarch64.whl (312.4 kB view details)

Uploaded CPython 3.7mmusllinux: musl 1.1+ ARM64

orjson-3.9.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (136.9 kB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

orjson-3.9.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (147.8 kB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ s390x

orjson-3.9.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (144.8 kB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ ppc64le

orjson-3.9.0-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (126.9 kB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ ARMv7l

orjson-3.9.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (265.6 kB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ ARM64

orjson-3.9.0-cp37-cp37m-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl (240.4 kB view details)

Uploaded CPython 3.7mmacOS 10.15+ universal2 (ARM64, x86-64)macOS 10.15+ x86-64macOS 11.0+ ARM64

File details

Details for the file orjson-3.9.0.tar.gz.

File metadata

  • Download URL: orjson-3.9.0.tar.gz
  • Upload date:
  • Size: 4.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.1

File hashes

Hashes for orjson-3.9.0.tar.gz
Algorithm Hash digest
SHA256 f6dd27c71cd6e146795f876449a8eae74f67ae1e4e244dfc1203489103eb2d94
MD5 d1f43fddf6e8a71fbeaf38a88d2f8208
BLAKE2b-256 ef00f3beb032641547b01c5850a4ff02bf6dbc318207c10b116d405f071321a0

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp311-none-win_amd64.whl.

File metadata

  • Download URL: orjson-3.9.0-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 191.7 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.1

File hashes

Hashes for orjson-3.9.0-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 44fa74b497e608a8cdca1ee37fe3533a30f17163c7e2872ab1b854900cf0dfcf
MD5 1da7096d7b94e004ca460457cb6886d4
BLAKE2b-256 c3cb683a60de5c1820412979aeca04e43cdb6c01a282edf1583bf84054d22458

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.9.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2af7dff1c7ddb0c83eb5773acf6566b153f8cd32e4ba782ae9ccd6d0f324efd3
MD5 16e8cce480ed75eeb1901870b828e9ca
BLAKE2b-256 2a9fe6e15918c7ef6fc38e3c009aa704937dfb31ba3916a7783eaf365b7a257f

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for orjson-3.9.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 edd77183c154cbedaa6dac32fee9cb770b04e2a7f367a5864f444578554cc946
MD5 e53583f14197ee3b9c9bfbd58e67c057
BLAKE2b-256 a9d0c3341cc7d1818dc80df738e3879275a8236da26cd17823ba4a66d12d577b

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d2fbf34667a8be48ec89d5ef479a00d4e7b3acda62d722c97377702da0c30ffd
MD5 597065dd3fe8959e7a4efdf962d3762d
BLAKE2b-256 8715f643ee5e696ab43a690c4745310553d2c3e8180c8cac59bab4e50dccd22a

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for orjson-3.9.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 09522937479bd39d5bb32d11a5ecdf6926fda43ac2cbde21cc1a9508b4e4ea29
MD5 057638d8204c67593b17190e8c3cc7e4
BLAKE2b-256 15a37520991c2e46ad7d9c2a9076aac4c3ca2bbe6820fc166b184f49ccbcea81

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for orjson-3.9.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 d4fcf598bd5a99a94caa7ec92ce657939f12491e4753ea7e4d6c03faf5f7912e
MD5 7a595ec3a9b7ed846c0f3b35a2339f15
BLAKE2b-256 b1e66389d8ea0a3d9981f13c61be638715c8f616d1231574131081d35195b9fe

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for orjson-3.9.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 86da00836029b2a071229c8aecab998a2f316c1bc7de10ae020d7311de3a6d0d
MD5 4090a250492f932ddf58e201efc1e9fe
BLAKE2b-256 ec2ba2530675913d060f7ee760efcb88dd94b4d2b4bb1dedf3b09c401a0b82f9

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for orjson-3.9.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c41d1ef6ec308e9e3701764b3de889ed8c1c126eceaea881dd1027bffbed89fe
MD5 b6993408116e8c91a86262fb365cd651
BLAKE2b-256 e5e4b48906b617a14e8e9b4d99d5b5f470002674ba434bc10770f17511255f1f

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp311-cp311-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl.

File metadata

File hashes

Hashes for orjson-3.9.0-cp311-cp311-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl
Algorithm Hash digest
SHA256 47d7e4a3effc0e9314bd5b06e7431f2490a5e64dcdcbbc4d60e713786fec327d
MD5 e96bbcbad6645cfbf331576d90fdae1f
BLAKE2b-256 d5649e81da69bb5dfc0a30d7ce2682f1a0aa4637a82fde9fd56e2e188f040898

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp310-none-win_amd64.whl.

File metadata

  • Download URL: orjson-3.9.0-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 191.7 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.1

File hashes

Hashes for orjson-3.9.0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 46c9733330b75c116438f555c0b971a2388b5f502e2dd4ec3bf6bacb96f82741
MD5 da87c67475c6650c0a1e748d3c887b38
BLAKE2b-256 df8c1184f03df5233823f88a1d3c5c1878f985a9958d06512d875fc9f8f5340b

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.9.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 21f6a6fdfbc13cd715c61e9fa9daeff732df6401ab7d6a2ebad0042313a40bd1
MD5 1e043e9bcb4ae3e84dce66bb1b16ff6e
BLAKE2b-256 e396fa927d1c19866b11dcfaf56d4de9d29b4ec4c14786b4a8c816cb58bb7e95

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for orjson-3.9.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 2536a7f30fd4d77532769ea9285cd20c69bd2b40acf980de94bbc79b1c6fad5a
MD5 7a69d9681480abbed4cf62f1152d139b
BLAKE2b-256 49a1de519d9901d92ef086d8ddfc80d63a2ee51871887af5397ed4896cf06202

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 45df5bf6531ffda518331cc93cdcd4c84f4a4a0507d72af8fb698c7131a440a0
MD5 9855737317849a3563dcbfc097131f97
BLAKE2b-256 441ecc7c47dcf5ce59a4b9b1fd873d3813a4bf8e3f18fbda3c402e70e07fdd87

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for orjson-3.9.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 1e3bde77c1e0061eb34bae6fea44818b2198e043ee10a16ad7b160921fee26ea
MD5 6eb7dc1c5c0b47df8fc976f352df3b22
BLAKE2b-256 2eee2b2ca51b317e975ef8fbc67b7909269c97591bc921bb5946174905b71d16

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for orjson-3.9.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 88626d898c408450c57664899831cf072787898af4847fa4466607ad2a83f454
MD5 339a2f138f7bf6f335a016c33617ed1c
BLAKE2b-256 0c75e41f01986e5ee56362c93ac5c92149f8fb6b6c8123c5aa5afe8a8b96746e

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for orjson-3.9.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 3f1193417b5a93deb41bcb8db27b61179b9b3e299b337b578c31f19159664da3
MD5 2eb2085118cfe2411fe76e06f4842a90
BLAKE2b-256 e87afffa0e31dde392a9116718e371e9deb27ac35b6f089644a1fd9ffdb6b3fe

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for orjson-3.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7a3693fde44b2eeb80074ecbe8c504b25baf71e66c080af2a574193a5ba81960
MD5 718c82f8a583a89659eae1ee2b246329
BLAKE2b-256 951cbe392b9e88f568a67fe546008a1d46cb955798c5bb02f11f9d0485dfa8ed

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp310-cp310-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl.

File metadata

File hashes

Hashes for orjson-3.9.0-cp310-cp310-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl
Algorithm Hash digest
SHA256 128b1cd0f00a37ba64a12cceeba4e8070655d4400edd55a737513ee663c1ed5a
MD5 393424de0fcb6797266ca2ced55e1fa0
BLAKE2b-256 ce19ae05dd3d72f8036ad4f7ab6ff5e41d4dd44e81fb62aa6a04d6c1f53d051f

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp39-none-win_amd64.whl.

File metadata

  • Download URL: orjson-3.9.0-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 191.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.1

File hashes

Hashes for orjson-3.9.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 3235c31d0fe674f6e3433e9ddfed212aa840c83a9b6ef5ae128950e2c808c303
MD5 622d1a1cbc71027437aff2c92a901b70
BLAKE2b-256 c9d90382e682322a996476ece62f92cc90cb067da3266a6a9ed71da9b49cc442

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.9.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9ee5f1ba82146a50d61fb58d310a37c0f406eda898172f9c98673b5d6f9461c3
MD5 a2768cf19661097ffd17f9a6fd0db534
BLAKE2b-256 101f2915887049c72a195a7991ec8e5cf0344fcd6a940a2e50abee860752b7bf

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for orjson-3.9.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 0e7fe5d603ee9177ff2e45858b4fc47fea2da0688f23d9773654889d56dfbc82
MD5 a97196cde95c69174836fcc6943da9f0
BLAKE2b-256 61ac1923bf83c0e36a9ac35d4c7347f715ce87b807c8692403b66047c7ac11e1

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 09ee828572fadcd58bf356d2c1bad99a95c7c9c1f182b407abbc7dec1810f542
MD5 44ad2a6741832f46575bdda5f1158659
BLAKE2b-256 d7c8a604ad0c7f0ffb5897328e0ca4a81697c2ffe1fac3f72bbaee59b12629cb

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for orjson-3.9.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 08cb43569198c1f5c89ecafcbfc62414f6115d894ff908d8cf8e5e24801364e6
MD5 3f431f86f7b2a84478e1246717c9bfc7
BLAKE2b-256 ee4547bcbad2c90b2846428bcd3a0a4623e37bb74ae3583bb96929b2e625d095

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for orjson-3.9.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 108c58d2c7648c991f82f9b2217c50981ad7cf6aaee3efbfaa9d807e49cd69b8
MD5 dcb933fd05a164699eda0eb89735c308
BLAKE2b-256 adc3bdc121a246921d0699c695eb73cf56417ab487767c4f761f9425dd1bf59c

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for orjson-3.9.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 949698bdddb1daff986d73e6bbe6cd68833cd80c4adc6b69fafbd46634d4672c
MD5 652f7737ac670c3f472981c62180b726
BLAKE2b-256 8b8a59611e84d2d76f5eb23ffaa9c7c8aaa728174b5e1cb86c6a29b8418ec349

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for orjson-3.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 271b6f1018757fc6bca40ae72e6cdb6cf84584dde2d1e5eaac30e387a13d9e72
MD5 d9f01be16f9a6159de738b4ef03e94b3
BLAKE2b-256 b295707184b9b991a58bc8f290aed0c3942f642e85c089f0228168af41e54cf3

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp39-cp39-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl.

File metadata

File hashes

Hashes for orjson-3.9.0-cp39-cp39-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl
Algorithm Hash digest
SHA256 a901c432828c191332d75f358142736c433d4a192f7794123e1d30d68193de86
MD5 26ba4fa070603a116b04a08ec9929657
BLAKE2b-256 5cca4d7a76381df4119c9ccfdaae1ab62004ed909f24519673118c3ad651a857

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp38-none-win_amd64.whl.

File metadata

  • Download URL: orjson-3.9.0-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 191.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.1

File hashes

Hashes for orjson-3.9.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 3a208d0bca609de3152eb8320d5093ad9c52979332f626c13500d1645c66bf8d
MD5 546d2859e914173adf6604a6df2161b4
BLAKE2b-256 3eb075635bd68fcf9dc3139e7c0f9d84dec8e0db1fcaa9d06a289c4e657edac7

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.9.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c68af71b1110820c914f9df75842895b5528ff524d3286fde57097b2b5ed8f22
MD5 fc5aa1947b5b50be7d99e21fd6b08ed8
BLAKE2b-256 1b4abb3412d18379e708311166699a4eccee9f6c1eadc756c7227246939da8a3

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for orjson-3.9.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 04e61db09ff155846b69d07cf5aa21001f2010ea669ec3169c1fbad9c9e40cd5
MD5 705b3b77874580adc36ca4d9439e4af0
BLAKE2b-256 40519d5dcc6c72996d6cc9192cc31aac2326d5ca388bbf6342963e7489a2897b

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e44ebe2129d43c5a48f3affa3fa59c6484ed16faf5b00486add1061a95384ab0
MD5 d0cc3ea46a6b4694c657d799eba656df
BLAKE2b-256 06522e60bda73f04f66859c6b0ab2468275d0cf4519804d85d4daecc5935c142

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for orjson-3.9.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 f6ab80b60195f166a9d666b2eaf6d2c74202b6da2a1fb4b4d66b9cc0ce5c9957
MD5 e034762958e369423cc73476439e5a70
BLAKE2b-256 2a38f0026e0413e3de18cbd03ad5120ed9651ed5675b5d8b3e8732a14aae765b

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for orjson-3.9.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 748c1e8df0b0880c63d323e167ad17ab4db2e1178a40902c2fcb68cbe402d7c8
MD5 6400efa4440494c1e4e5259dda521c27
BLAKE2b-256 026cc29d9f8d0bd85d105d9b8508008831cd5ec4895a48e1283134f8ed8699de

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for orjson-3.9.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 c4949fc1304b702197c0840882e84b86d8d5ca33c3d945cc60727bc1786c2b20
MD5 be6a844fc617b52c87f7dbc9da684d1d
BLAKE2b-256 ead059c5a2e35724d2af65f42b05030783d356035f91ca81c3bf2dee454070fa

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for orjson-3.9.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ebe372e9f4e4f0335b7b4ebfab991b3734371e3d5b7f989ca3baa5da25185f4a
MD5 d8118c58eac812647308f67f03a3e466
BLAKE2b-256 8e8761885b10fa30cb2ed4ddf0f9149cdd295d8cf409cf78370b55a200e4db2b

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp38-cp38-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl.

File metadata

File hashes

Hashes for orjson-3.9.0-cp38-cp38-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl
Algorithm Hash digest
SHA256 d4c2d31178e3027affd98eead033f1c406890df83a0ca2016604cc21f722a1d1
MD5 8a0137f27e73fdb2a195686e65a20419
BLAKE2b-256 3ad5835fa231ae3e6811b9333522d4dbd09d02927d1e1c387820b1890c673b6e

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp37-none-win_amd64.whl.

File metadata

  • Download URL: orjson-3.9.0-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 191.5 kB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.1

File hashes

Hashes for orjson-3.9.0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 5afd22847b07b63f2b8fcfddd5b7a6f47c5aaa25e19b97a3d6d39508b8fd465a
MD5 cbae461f7ede86d4fddd9fb371c1c5ad
BLAKE2b-256 46ed5b360740dae0de25303789d2447a4a5827a162314a376ace7112b22d83b5

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.9.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9de2129d40674007cb24164939e075b5b39fee768bf20801e08c0e3283bfb18e
MD5 7bf3bdde6ea1109df5330856723b4e0d
BLAKE2b-256 c93531348485dd1e303c5f87c2e2d3be6ae4bdfdb51c2677227190543b5a3f0b

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for orjson-3.9.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 721d47dffedb7795ffea8a06f2de7d192de7b58e085cf357a99abf0eb931f2c3
MD5 d237b1a889c992fd70b3aa65b693d3b8
BLAKE2b-256 73dc377f4ab9875b25f79e3c46d025922045c66e2057592f473a0675091a6f6a

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.9.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6c50654e4870805e4b1a587c2c3c5ef2f36f3e67fc463a738339ff40d65f7db1
MD5 ce8a97f428ae7d704dec4612c765b5d7
BLAKE2b-256 56f4571b77ad51b91641aabef03e135792daa741939855d6e1ed4e830786f26d

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for orjson-3.9.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 bd89d63707ac616462832bfc5d16fa0c12483f86add2432ce55c8710c9531c03
MD5 08236b3789aa7e04dab1f63f93964687
BLAKE2b-256 00a3f645f6bdf235e217114250f8354705d6307ad2b083f4e3ae7c22b763f0be

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for orjson-3.9.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 8a1fcddcabe121e393f3c4a31ed6d3535214d42a4ece0f9dde2e250006d6a58d
MD5 2d58eef48240e07f05e221e4d2195fc0
BLAKE2b-256 4546baedf92b3d24ae05325441e8d04c835ebf96e154d270530c48e7cd4ca4a2

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for orjson-3.9.0-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 d414fd0678e949779104f5b307f0f9fac861728e19d3cdde66759af77f892da0
MD5 c16206a32138f21097856bbe24b11cbf
BLAKE2b-256 6f1b7aa9c75c7f6647c0c4b41c8a77d84d409fead13a23dc63f407ef964222fa

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for orjson-3.9.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c7b241c3229084035b38cac9b5c96b43644da829da41d9d5be0fefb96fb116e1
MD5 701ba42081c4eb77b2848b876b4dabf8
BLAKE2b-256 7359cb014160188df36c74aac8c1fcab3b4a59a0f0d070c69f65423cf1ddfca6

See more details on using hashes here.

File details

Details for the file orjson-3.9.0-cp37-cp37m-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl.

File metadata

File hashes

Hashes for orjson-3.9.0-cp37-cp37m-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl
Algorithm Hash digest
SHA256 f6476e2487c0b7387187de15e5b8f6635c29b75934f2e689ca8cad6550439f3d
MD5 f7ad48ad3f96ff658a30d73bbe693256
BLAKE2b-256 6963a0a20c4d858e23be5d7cb544d28bd513771d71bab04f20b293a06eb9ecb1

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page