Skip to main content

Fast, correct Python JSON library supporting dataclasses, datetimes, and numpy

Project description

orjson

orjson is a fast, correct JSON library for Python. It benchmarks as the fastest Python library for JSON and is more correct than the standard json library or other third-party libraries. It serializes dataclass, datetime, numpy, and UUID instances natively.

Its features and drawbacks compared to other Python JSON libraries:

  • serializes dataclass instances 40-50x as fast as other libraries
  • serializes datetime, date, and time instances to RFC 3339 format, e.g., "1970-01-01T00:00:00+00:00"
  • serializes numpy.ndarray instances 3-10x as fast as other libraries
  • pretty prints 10x to 20x as fast as the standard library
  • serializes to bytes rather than str, i.e., is not a drop-in replacement
  • serializes str without escaping unicode to ASCII, e.g., "好" rather than "\\u597d"
  • serializes float 10x as fast and deserializes twice as fast as other libraries
  • serializes arbitrary types using a default hook
  • has strict UTF-8 conformance, more correct than the standard library
  • has strict JSON conformance in not supporting Nan/Infinity/-Infinity
  • has an option for strict JSON conformance on 53-bit integers with default support for 64-bit
  • does not support subclasses by default, requiring use of default hook
  • does not provide load() or dump() functions for reading from/writing to file-like objects

orjson supports CPython 3.6, 3.7, 3.8, and 3.9. It distributes x86_64/amd64 and aarch64/armv8 wheels for Linux. It distributes x86_64/amd64 wheels for macOS and Windows. orjson does not support PyPy.

orjson is licensed under both the Apache 2.0 and MIT licenses. The repository and issue tracker is github.com/ijl/orjson, and patches may be submitted there. There is a CHANGELOG available in the repository.

  1. Usage
    1. Install
    2. Serialize
      1. default
      2. option
    3. Deserialize
  2. Types
    1. dataclass
    2. datetime
    3. float
    4. int
    5. numpy
    6. str
    7. UUID
  3. Testing
  4. Performance
    1. Latency
    2. Memory
    3. Reproducing
  5. Packaging
  6. License

Usage

Install

To install a wheel from PyPI:

pip install --upgrade orjson

To depend on orjson in a project:

orjson>=2.6,<3

To build a wheel, see packaging.

Serialize

def dumps(
    __obj: Any,
    default: Optional[Callable[[Any], Any]] = ...,
    option: Optional[int] = ...,
) -> bytes: ...

dumps() serializes Python objects to JSON.

It natively serializes str, dict, list, tuple, int, float, bool, dataclasses.dataclass, typing.TypedDict, datetime.datetime, datetime.date, datetime.time, uuid.UUID, numpy.ndarray, and None instances. It supports arbitrary types through default. It does not serialize subclasses of supported types natively, with the exception of dataclasses.dataclass subclasses.

It raises JSONEncodeError on an unsupported type. This exception message describes the invalid object.

It raises JSONEncodeError on a str that contains invalid UTF-8.

It raises JSONEncodeError on an integer that exceeds 64 bits by default or, with OPT_STRICT_INTEGER, 53 bits.

It raises JSONEncodeError if a dict has a key of a type other than str.

It raises JSONEncodeError if the output of default recurses to handling by default more than 254 levels deep.

It raises JSONEncodeError on circular references.

It raises JSONEncodeError if a tzinfo on a datetime object is incorrect.

JSONEncodeError is a subclass of TypeError. This is for compatibility with the standard library.

default

To serialize a subclass or arbitrary types, specify default as a callable that returns a supported type. default may be a function, lambda, or callable class instance. To specify that a type was not handled by default, raise an exception such as TypeError.

>>> import orjson, decimal
>>>
def default(obj):
    if isinstance(obj, decimal.Decimal):
        return str(obj)
    raise TypeError

>>> orjson.dumps(decimal.Decimal("0.0842389659712649442845"))
JSONEncodeError: Type is not JSON serializable: decimal.Decimal
>>> orjson.dumps(decimal.Decimal("0.0842389659712649442845"), default=default)
b'"0.0842389659712649442845"'
>>> orjson.dumps({1, 2}, default=default)
orjson.JSONEncodeError: Type is not JSON serializable: set

The default callable may return an object that itself must be handled by default up to 254 times before an exception is raised.

It is important that default raise an exception if a type cannot be handled. Python otherwise implicitly returns None, which appears to the caller like a legitimate value and is serialized:

>>> import orjson, json, rapidjson
>>>
def default(obj):
    if isinstance(obj, decimal.Decimal):
        return str(obj)

>>> orjson.dumps({"set":{1, 2}}, default=default)
b'{"set":null}'
>>> json.dumps({"set":{1, 2}}, default=default)
'{"set":null}'
>>> rapidjson.dumps({"set":{1, 2}}, default=default)
'{"set":null}'

option

To modify how data is serialized, specify option. Each option is an integer constant in orjson. To specify multiple options, mask them together, e.g., option=orjson.OPT_STRICT_INTEGER | orjson.OPT_NAIVE_UTC.

OPT_INDENT_2

Pretty-print output with an indent of two spaces. This is equivalent to indent=2 in the standard library. Pretty printing is slower and the output larger. orjson is the fastest compared library at pretty printing and has much less of a slowdown to pretty print than the standard library does. This option is compatible with all other options.

>>> import orjson
>>> orjson.dumps({"a": "b", "c": {"d": True}, "e": [1, 2]})
b'{"a":"b","c":{"d":true},"e":[1,2]}'
>>> orjson.dumps(
    {"a": "b", "c": {"d": True}, "e": [1, 2]},
    option=orjson.OPT_INDENT_2
)
b'{\n  "a": "b",\n  "c": {\n    "d": true\n  },\n  "e": [\n    1,\n    2\n  ]\n}'

If displayed, the indentation and linebreaks appear like this:

{
  "a": "b",
  "c": {
    "d": true
  },
  "e": [
    1,
    2
  ]
}

This measures serializing the github.json fixture as compact (52KiB) or pretty (64KiB):

Library compact (ms) pretty (ms) vs. orjson
orjson 0.07 0.07 1.0
ujson 0.16 0.17 2.4
rapidjson 0.29
simplejson 0.48 1.69 22.9
json 0.35 1.28 17.4

This measures serializing the citm_catalog.json fixture, more of a worst case due to the amount of nesting and newlines, as compact (489KiB) or pretty (1.1MiB):

Library compact (ms) pretty (ms) vs. orjson
orjson 1.32 2.49 1.0
ujson 3.67 5.23 2.1
rapidjson 3.67
simplejson 13.13 78.74 31.7
json 7.87 59.22 23.8

rapidjson is blank because it does not support pretty printing. This can be reproduced using the pyindent script.

OPT_NAIVE_UTC

Serialize datetime.datetime objects without a tzinfo as UTC. This has no effect on datetime.datetime objects that have tzinfo set.

>>> import orjson, datetime
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0),
    )
b'"1970-01-01T00:00:00"'
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0),
        option=orjson.OPT_NAIVE_UTC,
    )
b'"1970-01-01T00:00:00+00:00"'
OPT_NON_STR_KEYS

Serialize dict keys of type other than str. This allows dict keys to be one of str, int, float, bool, None, datetime.datetime, datetime.date, datetime.time, and uuid.UUID. For comparison, the standard library serializes str, int, float, bool or None by default. orjson benchmarks as being faster at serializing non-str keys than other libraries. This option is slower for str keys than the default and is not recommended generally.

>>> import orjson, datetime, uuid
>>> orjson.dumps(
        {uuid.UUID("7202d115-7ff3-4c81-a7c1-2a1f067b1ece"): [1, 2, 3]},
        option=orjson.OPT_NON_STR_KEYS,
    )
b'{"7202d115-7ff3-4c81-a7c1-2a1f067b1ece":[1,2,3]}'
>>> orjson.dumps(
        {datetime.datetime(1970, 1, 1, 0, 0, 0): [1, 2, 3]},
        option=orjson.OPT_NON_STR_KEYS | orjson.OPT_NAIVE_UTC,
    )
b'{"1970-01-01T00:00:00+00:00":[1,2,3]}'

These types are generally serialized how they would be as values, e.g., datetime.datetime is still an RFC 3339 string and respects options affecting it. The exception is that int serialization does not respect OPT_STRICT_INTEGER.

This option has the risk of creating duplicate keys. This is because non-str objects may serialize to the same str as an existing key, e.g., {"1": true, 1: false}. The last key to be inserted to the dict will be serialized last and a JSON deserializer will presumably take the last occurrence of a key (in the above, false). The first value will be lost.

This option is compatible with orjson.OPT_SORT_KEYS. If sorting is used, note the sort is unstable and will be unpredictable for duplicate keys.

>>> import orjson, datetime
>>> orjson.dumps(
    {"other": 1, datetime.date(1970, 1, 5): 2, datetime.date(1970, 1, 3): 3},
    option=orjson.OPT_NON_STR_KEYS | orjson.OPT_SORT_KEYS
)
b'{"1970-01-03":3,"1970-01-05":2,"other":1}'

This measures serializing 589KiB of JSON comprising a list of 100 dict in which each dict has both 365 randomly-sorted int keys representing epoch timestamps as well as one str key and the value for each key is a single integer. In "str keys", the keys were converted to str before serialization, and orjson still specifes option=orjson.OPT_NON_STR_KEYS (which is always somewhat slower).

Library str keys (ms) int keys (ms) int keys sorted (ms)
orjson 1.97 2.24 6.50
ujson 2.82 5.32
rapidjson 4.47
simplejson 9.42 11.77 21.52
json 6.32 8.05

ujson is blank for sorting because it segfaults. json is blank because it raises TypeError on attempting to sort before converting all keys to str. rapidjson is blank because it does not support non-str keys. This can be reproduced using the pynonstr script.

OPT_OMIT_MICROSECONDS

Do not serialize the microsecond field on datetime.datetime and datetime.time instances.

>>> import orjson, datetime
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0, 1),
    )
b'"1970-01-01T00:00:00.000001"'
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0, 1),
        option=orjson.OPT_OMIT_MICROSECONDS,
    )
b'"1970-01-01T00:00:00"'
OPT_SERIALIZE_DATACLASS

Serialize dataclasses.dataclass instances. For more, see dataclass.

OPT_SERIALIZE_NUMPY

Serialize numpy.ndarray instances. For more, see numpy.

OPT_SERIALIZE_UUID

Serialize uuid.UUID instances. For more, see UUID.

OPT_SORT_KEYS

Serialize dict keys in sorted order. The default is to serialize in an unspecified order. This is equivalent to sort_keys=True in the standard library.

This can be used to ensure the order is deterministic for hashing or tests. It has a substantial performance penalty and is not recommended in general.

>>> import orjson
>>> orjson.dumps({"b": 1, "c": 2, "a": 3})
b'{"b":1,"c":2,"a":3}'
>>> orjson.dumps({"b": 1, "c": 2, "a": 3}, option=orjson.OPT_SORT_KEYS)
b'{"a":3,"b":1,"c":2}'

This measures serializing the twitter.json fixture unsorted and sorted:

Library unsorted (ms) sorted (ms) vs. orjson
orjson 0.5 0.92 1
ujson 1.61 2.48 2.7
rapidjson 2.17 2.89 3.2
simplejson 3.56 5.13 5.6
json 3.59 4.59 5

The benchmark can be reproduced using the pysort script.

The sorting is not collation/locale-aware:

>>> import orjson
>>> orjson.dumps({"a": 1, "ä": 2, "A": 3}, option=orjson.OPT_SORT_KEYS)
b'{"A":3,"a":1,"\xc3\xa4":2}'

This is the same sorting behavior as the standard library, rapidjson, simplejson, and ujson.

dataclass also serialize as maps but this has no effect on them.

OPT_STRICT_INTEGER

Enforce 53-bit limit on integers. The limit is otherwise 64 bits, the same as the Python standard library. For more, see int.

OPT_UTC_Z

Serialize a UTC timezone on datetime.datetime instances as Z instead of +00:00.

>>> import orjson, datetime
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=datetime.timezone.utc),
    )
b'"1970-01-01T00:00:00+00:00"'
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=datetime.timezone.utc),
        option=orjson.OPT_UTC_Z
    )
b'"1970-01-01T00:00:00Z"'

Deserialize

def loads(__obj: Union[bytes, bytearray, str]) -> Any: ...

loads() deserializes JSON to Python objects. It deserializes to dict, list, int, float, str, bool, and None objects.

bytes, bytearray, and str input are accepted. If the input exists as bytes (was read directly from a source), it is recommended to pass bytes. This has lower memory usage and lower latency.

orjson maintains a cache of map keys for the duration of the process. This causes a net reduction in memory usage by avoiding duplicate strings. The keys must be at most 64 chars to be cached and 512 entries are stored.

It raises JSONDecodeError if given an invalid type or invalid JSON. This includes if the input contains NaN, Infinity, or -Infinity, which the standard library allows, but is not valid JSON.

JSONDecodeError is a subclass of json.JSONDecodeError and ValueError. This is for compatibility with the standard library.

Types

dataclass

orjson serializes instances of dataclasses.dataclass natively. It serializes instances 40-50x as fast as other libraries and avoids a severe slowdown seen in other libraries compared to serializing dict. To serialize instances, specify option=orjson.OPT_SERIALIZE_DATACLASS.

It is supported to pass all variants of dataclasses, including dataclasses using __slots__, frozen dataclasses, those with optional or default attributes, and subclasses. There is a performance benefit to not using __slots__.

Library dict (ms) dataclass (ms) vs. orjson
orjson 1.40 1.60 1
ujson
rapidjson 3.64 68.48 42
simplejson 14.21 92.18 57
json 13.28 94.90 59

This measures serializing 555KiB of JSON, orjson natively and other libraries using default to serialize the output of dataclasses.asdict(). This can be reproduced using the pydataclass script.

Dataclasses are serialized as maps, with every attribute serialized and in the order given on class definition:

>>> import dataclasses, orjson, typing

@dataclasses.dataclass
class Member:
    id: int
    active: bool = dataclasses.field(default=False)

@dataclasses.dataclass
class Object:
    id: int
    name: str
    members: typing.List[Member]

>>> orjson.dumps(
        Object(1, "a", [Member(1, True), Member(2)]),
        option=orjson.OPT_SERIALIZE_DATACLASS,
    )
b'{"id":1,"name":"a","members":[{"id":1,"active":true},{"id":2,"active":false}]}'

Users may wish to control how dataclass instances are serialized, e.g., to not serialize an attribute or to change the name of an attribute when serialized. orjson may implement support using the metadata mapping on field attributes, e.g., field(metadata={"json_serialize": False}), if use cases are clear.

datetime

orjson serializes datetime.datetime objects to RFC 3339 format, e.g., "1970-01-01T00:00:00+00:00". This is a subset of ISO 8601 and compatible with isoformat() in the standard library.

>>> import orjson, datetime, pendulum
>>> orjson.dumps(
    datetime.datetime(2018, 12, 1, 2, 3, 4, 9, tzinfo=pendulum.timezone('Australia/Adelaide'))
)
b'"2018-12-01T02:03:04.000009+10:30"'
>>> orjson.dumps(
    datetime.datetime.fromtimestamp(4123518902).replace(tzinfo=datetime.timezone.utc)
)
b'"2100-09-01T21:55:02+00:00"'
>>> orjson.dumps(
    datetime.datetime.fromtimestamp(4123518902)
)
b'"2100-09-01T21:55:02"'

datetime.datetime supports instances with a tzinfo that is None, datetime.timezone.utc or a timezone instance from the pendulum, pytz, or dateutil/arrow libraries.

datetime.time objects must not have a tzinfo.

>>> import orjson, datetime
>>> orjson.dumps(datetime.time(12, 0, 15, 290))
b'"12:00:15.000290"'

datetime.date objects will always serialize.

>>> import orjson, datetime
>>> orjson.dumps(datetime.date(1900, 1, 2))
b'"1900-01-02"'

Errors with tzinfo result in JSONEncodeError being raised.

It is faster to have orjson serialize datetime objects than to do so before calling dumps(). If using an unsupported type such as pendulum.datetime, use default.

float

orjson serializes and deserializes double precision floats with no loss of precision and consistent rounding. The same behavior is observed in rapidjson, simplejson, and json. ujson is inaccurate in both serialization and deserialization, i.e., it modifies the data.

orjson.dumps() serializes Nan, Infinity, and -Infinity, which are not compliant JSON, as null:

>>> import orjson, ujson, rapidjson, json
>>> orjson.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
b'[null,null,null]'
>>> ujson.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
OverflowError: Invalid Inf value when encoding double
>>> rapidjson.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
'[NaN,Infinity,-Infinity]'
>>> json.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
'[NaN, Infinity, -Infinity]'

int

JSON only requires that implementations accept integers with 53-bit precision. orjson will, by default, serialize 64-bit integers. This is compatible with the Python standard library and other non-browser implementations. For transmitting JSON to a web browser or other strict implementations, dumps() can be configured to raise a JSONEncodeError on values exceeding the 53-bit range.

>>> import orjson
>>> orjson.dumps(9007199254740992)
b'9007199254740992'
>>> orjson.dumps(9007199254740992, option=orjson.OPT_STRICT_INTEGER)
JSONEncodeError: Integer exceeds 53-bit range
>>> orjson.dumps(-9007199254740992, option=orjson.OPT_STRICT_INTEGER)
JSONEncodeError: Integer exceeds 53-bit range

numpy

orjson natively serializes numpy.ndarray instances. Arrays may have a dtype of numpy.bool, numpy.float32, numpy.float64, numpy.int32, numpy.int64, numpy.uint32, numpy.uint64, numpy.uintp, or numpy.intp. orjson is faster than all compared libraries at serializing numpy instances. Serializing numpy data requires specifying option=orjson.OPT_SERIALIZE_NUMPY.

>>> import orjson, numpy
>>> orjson.dumps(
        numpy.array([[1, 2, 3], [4, 5, 6]]),
        option=orjson.OPT_SERIALIZE_NUMPY,
)
b'[[1,2,3],[4,5,6]]'

The array must be a contiguous C array (C_CONTIGUOUS) and one of the supported datatypes. Individual items (e.g., numpy.float64(1)) are not supported.

If an array is not a contiguous C array or contains an supported datatype, orjson falls through to default. In default, obj.tolist() can be specified. If an array is malformed, which is not expected, orjson.JSONEncodeError is raised.

This measures serializing 92MiB of JSON from an numpy.ndarray with dimensions of (50000, 100) and numpy.float64 values:

Library Latency (ms) RSS diff (MiB) vs. orjson
orjson 302 99 1.0
ujson
rapidjson 3,620 310 12.0
simplejson 3,596 297 11.9
json 3,410 298 11.3

This measures serializing 100MiB of JSON from an numpy.ndarray with dimensions of (100000, 100) and numpy.int32 values:

Library Latency (ms) RSS diff (MiB) vs. orjson
orjson 191 118 1.0
ujson
rapidjson 1,808 553 9.5
simplejson 1,796 506 9.4
json 1,590 506 8.3

This measures serializing 105MiB of JSON from an numpy.ndarray with dimensions of (100000, 200) and numpy.bool values:

Library Latency (ms) RSS diff (MiB) vs. orjson
orjson 211 123 1.0
ujson
rapidjson 919 346 4.3
simplejson 1,239 367 5.9
json 1,243 367 5.9

In these benchmarks, orjson serializes natively, ujson is blank because it does not support a default parameter, and the other libraries serialize ndarray.tolist() via default. The RSS column measures peak memory usage during serialization. This can be reproduced using the pynumpy script.

orjson does not have an installation or compilation dependency on numpy. The implementation is independent, reading numpy.ndarray using PyArrayInterface.

str

orjson is strict about UTF-8 conformance. This is stricter than the standard library's json module, which will serialize and deserialize UTF-16 surrogates, e.g., "\ud800", that are invalid UTF-8.

If orjson.dumps() is given a str that does not contain valid UTF-8, orjson.JSONEncodeError is raised. If loads() receives invalid UTF-8, orjson.JSONDecodeError is raised.

orjson and rapidjson are the only compared JSON libraries to consistently error on bad input.

>>> import orjson, ujson, rapidjson, json
>>> orjson.dumps('\ud800')
JSONEncodeError: str is not valid UTF-8: surrogates not allowed
>>> ujson.dumps('\ud800')
UnicodeEncodeError: 'utf-8' codec ...
>>> rapidjson.dumps('\ud800')
UnicodeEncodeError: 'utf-8' codec ...
>>> json.dumps('\ud800')
'"\\ud800"'
>>> orjson.loads('"\\ud800"')
JSONDecodeError: unexpected end of hex escape at line 1 column 8: line 1 column 1 (char 0)
>>> ujson.loads('"\\ud800"')
''
>>> rapidjson.loads('"\\ud800"')
ValueError: Parse error at offset 1: The surrogate pair in string is invalid.
>>> json.loads('"\\ud800"')
'\ud800'

To make a best effort at deserializing bad input, first decode bytes using the replace or lossy argument for errors:

>>> import orjson
>>> orjson.loads(b'"\xed\xa0\x80"')
JSONDecodeError: str is not valid UTF-8: surrogates not allowed
>>> orjson.loads(b'"\xed\xa0\x80"'.decode("utf-8", "replace"))
'���'

UUID

orjson serializes uuid.UUID instances to RFC 4122 format, e.g., "f81d4fae-7dec-11d0-a765-00a0c91e6bf6". This requires specifying option=orjson.OPT_SERIALIZE_UUID.

>>> import orjson, uuid
>>> orjson.dumps(
    uuid.UUID('f81d4fae-7dec-11d0-a765-00a0c91e6bf6'),
    option=orjson.OPT_SERIALIZE_UUID,
)
b'"f81d4fae-7dec-11d0-a765-00a0c91e6bf6"'
>>> orjson.dumps(
    uuid.uuid5(uuid.NAMESPACE_DNS, "python.org"),
    option=orjson.OPT_SERIALIZE_UUID,
)
b'"886313e1-3b8a-5372-9b90-0c9aee199e5d"'

Testing

The library has comprehensive tests. There are tests against fixtures in the JSONTestSuite and nativejson-benchmark repositories. It is tested to not crash against the Big List of Naughty Strings. It is tested to not leak memory. It is tested to not crash against and not accept invalid UTF-8. There are integration tests exercising the library's use in web servers (gunicorn using multiprocess/forked workers) and when multithreaded. It also uses some tests from the ultrajson library.

Performance

Serialization and deserialization performance of orjson is better than ultrajson, rapidjson, simplejson, or json. The benchmarks are done on fixtures of real data:

  • twitter.json, 631.5KiB, results of a search on Twitter for "一", containing CJK strings, dictionaries of strings and arrays of dictionaries, indented.

  • github.json, 55.8KiB, a GitHub activity feed, containing dictionaries of strings and arrays of dictionaries, not indented.

  • citm_catalog.json, 1.7MiB, concert data, containing nested dictionaries of strings and arrays of integers, indented.

  • canada.json, 2.2MiB, coordinates of the Canadian border in GeoJSON format, containing floats and arrays, indented.

Latency

alt text alt text alt text alt text alt text alt text alt text alt text

twitter.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.59 1680 1
ujson 1.82 549.6 3.07
rapidjson 2.45 408.8 4.12
simplejson 3.23 309.7 5.44
json 3.22 310.1 5.43

twitter.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 2.67 374.3 1
ujson 2.87 348.7 1.07
rapidjson 3.73 268.4 1.39
simplejson 3.51 285.9 1.32
json 3.85 260.4 1.44

github.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.07 14839.8 1
ujson 0.18 5596.8 2.65
rapidjson 0.27 3749.5 3.96
simplejson 0.44 2296.9 6.46
json 0.36 2740.7 5.42

github.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.22 4449.3 1
ujson 0.28 3530.5 1.26
rapidjson 0.31 3186.7 1.4
simplejson 0.29 3489.7 1.27
json 0.33 3070.2 1.45

citm_catalog.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 1.02 985.4 1
ujson 3.07 325 3.03
rapidjson 3.54 282.8 3.48
simplejson 10.82 92 10.66
json 6.77 147.4 6.67

citm_catalog.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 5.07 194.2 1
ujson 6.22 160.7 1.23
rapidjson 7.49 133.6 1.48
simplejson 7.46 133.9 1.47
json 8.02 124.5 1.58

canada.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 4.8 202 1
ujson
rapidjson 63.97 15.6 13.33
simplejson 82.38 12.1 17.17
json 64.96 15.4 13.54

canada.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 16.25 61.5 1
ujson
rapidjson 38.02 26.3 2.34
simplejson 37.2 26.9 2.29
json 37.78 27.2 2.33

If a row is blank, the library did not serialize and deserialize the fixture without modifying it, e.g., returning different values for floating point numbers.

Memory

orjson's memory usage when deserializing is similar to or lower than the standard library and other third-party libraries.

This measures, in the first column, RSS after importing a library and reading the fixture, and in the second column, increases in RSS after repeatedly calling loads() on the fixture.

twitter.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 13.6 2.5
ujson 13.2 4.2
rapidjson 14.8 6.5
simplejson 13.3 2.5
json 12.9 2.3

github.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 13 0.3
ujson 12.5 0.6
rapidjson 14.3 0.7
simplejson 12.7 0.3
json 12.3 0.3

citm_catalog.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 15 7.7
ujson 14.5 11
rapidjson 15.8 36
simplejson 14.5 30.7
json 14.1 27.1

canada.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 17.3 15.7
ujson
rapidjson 18.2 17.9
simplejson 17.1 19.6
json 16.6 19.4

Reproducing

The above was measured using Python 3.8.2 on Linux (x86_64) with orjson 2.6.1, ujson 1.35, python-rapidson 0.9.1, and simplejson 3.17.0.

The latency results can be reproduced using the pybench and graph scripts. The memory results can be reproduced using the pymem script.

Packaging

To package orjson requires Rust on the nightly channel and the maturin build tool. maturin can be installed from PyPI or packaged as well. maturin can be invoked like:

maturin build --no-sdist --release --strip --manylinux off

If building for musl libc, specify -C target-feature=-crt-static.

orjson is tested for amd64 and aarch64 on Linux, macOS, and Windows. It may not work on 32-bit targets. It should be compiled with -C target-feature=+sse2 on amd64 and +neon on arm7.

There are no runtime dependencies other than libc.

orjson's tests are included in the source distribution on PyPI. It is necessarily to install dependencies from PyPI specified in test/requirements.txt. These require a C compiler. The tests do not make network requests.

The tests should be run as part of the build.

License

orjson was written by ijl <ijl@mailbox.org>, copyright 2018 - 2020, licensed under either the Apache 2 or MIT licenses.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

orjson-2.6.2.tar.gz (524.3 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

orjson-2.6.2-cp39-cp39-manylinux2014_x86_64.whl (218.3 kB view details)

Uploaded CPython 3.9

orjson-2.6.2-cp39-cp39-manylinux2014_aarch64.whl (194.5 kB view details)

Uploaded CPython 3.9

orjson-2.6.2-cp38-none-win_amd64.whl (185.8 kB view details)

Uploaded CPython 3.8Windows x86-64

orjson-2.6.2-cp38-cp38-manylinux2014_aarch64.whl (194.5 kB view details)

Uploaded CPython 3.8

orjson-2.6.2-cp38-cp38-manylinux1_x86_64.whl (218.4 kB view details)

Uploaded CPython 3.8

orjson-2.6.2-cp38-cp38-macosx_10_7_x86_64.whl (200.7 kB view details)

Uploaded CPython 3.8macOS 10.7+ x86-64

orjson-2.6.2-cp37-none-win_amd64.whl (185.8 kB view details)

Uploaded CPython 3.7Windows x86-64

orjson-2.6.2-cp37-cp37m-manylinux2014_aarch64.whl (194.5 kB view details)

Uploaded CPython 3.7m

orjson-2.6.2-cp37-cp37m-manylinux1_x86_64.whl (218.4 kB view details)

Uploaded CPython 3.7m

orjson-2.6.2-cp37-cp37m-macosx_10_7_x86_64.whl (200.7 kB view details)

Uploaded CPython 3.7mmacOS 10.7+ x86-64

orjson-2.6.2-cp36-none-win_amd64.whl (185.9 kB view details)

Uploaded CPython 3.6Windows x86-64

orjson-2.6.2-cp36-cp36m-manylinux2014_aarch64.whl (194.5 kB view details)

Uploaded CPython 3.6m

orjson-2.6.2-cp36-cp36m-manylinux1_x86_64.whl (218.5 kB view details)

Uploaded CPython 3.6m

orjson-2.6.2-cp36-cp36m-macosx_10_7_x86_64.whl (200.9 kB view details)

Uploaded CPython 3.6mmacOS 10.7+ x86-64

File details

Details for the file orjson-2.6.2.tar.gz.

File metadata

  • Download URL: orjson-2.6.2.tar.gz
  • Upload date:
  • Size: 524.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.2

File hashes

Hashes for orjson-2.6.2.tar.gz
Algorithm Hash digest
SHA256 2245add9583181a2173ea74e9d81c197131d36bc7fc6f2635aec9f0b52db965e
MD5 8a53c87b455d53281610a33fea496fe3
BLAKE2b-256 a46f96086bda513e3925d56b0110da251294bff254709bf9b7f184dcdfc94061

See more details on using hashes here.

File details

Details for the file orjson-2.6.2-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

  • Download URL: orjson-2.6.2-cp39-cp39-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 218.3 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.2 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.9.0a5

File hashes

Hashes for orjson-2.6.2-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8f928b995f00ee2d5f7da7c0db4e4b459e8483d645a0859cc850c69ccc28e794
MD5 55c98f7543f84346b177e2df55d9c556
BLAKE2b-256 1c6d00c1839f1a725544ac45e5eebac39882abc889a7b299b287ba3388330fdc

See more details on using hashes here.

File details

Details for the file orjson-2.6.2-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

  • Download URL: orjson-2.6.2-cp39-cp39-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 194.5 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.2 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.9.0a5

File hashes

Hashes for orjson-2.6.2-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8b4ce637bd8dd4176deb28dc49d1232d9c4555db2210880c89b50e77f9c3f3a8
MD5 5b024cc1af76b3c3c6c7e1a15e239e81
BLAKE2b-256 98d8645989981d64e4487de37eded6832ca5f070f2f9dd3796c4d4080110055b

See more details on using hashes here.

File details

Details for the file orjson-2.6.2-cp38-none-win_amd64.whl.

File metadata

  • Download URL: orjson-2.6.2-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 185.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.2

File hashes

Hashes for orjson-2.6.2-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 d212547ea703770857d56ef82f0acadee090bb8c0b1276f96ae59e805ad45a6e
MD5 f2dea9365a2c0f5a1c88b22657d28d61
BLAKE2b-256 a02f78fd948400d8b45a2fa0b612caba33af8a5046cf2accdea1e321abfdc8df

See more details on using hashes here.

File details

Details for the file orjson-2.6.2-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

  • Download URL: orjson-2.6.2-cp38-cp38-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 194.5 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.2

File hashes

Hashes for orjson-2.6.2-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1f453abafc04b520420ba05f1df9e19233eb15332fff80ba7d01d271e4680e3e
MD5 e471bc487a9e39baae7d24d6cf44b8ce
BLAKE2b-256 7468b49c48545dfa324f76d07f7970808157fc8a7f781c5c91c4d0be9d03b762

See more details on using hashes here.

File details

Details for the file orjson-2.6.2-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: orjson-2.6.2-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 218.4 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.2

File hashes

Hashes for orjson-2.6.2-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7f723d243870c460cb5919eec859a45e951b52c1816c001c49f87183e50dbfc8
MD5 d321820ab1753644913a49770325908e
BLAKE2b-256 1619908cec234a46e755ed9093ab3ec61949c17b142d22ab5e8bf70ecc5b6230

See more details on using hashes here.

File details

Details for the file orjson-2.6.2-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

  • Download URL: orjson-2.6.2-cp38-cp38-macosx_10_7_x86_64.whl
  • Upload date:
  • Size: 200.7 kB
  • Tags: CPython 3.8, macOS 10.7+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.2

File hashes

Hashes for orjson-2.6.2-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 f211abb11a9cd461f2e2d79378736edc3135b85c7292da8de4bdaeae7c566d1e
MD5 0f76583418b8050f6ef4704c71fe67c3
BLAKE2b-256 ef5d55918317b5590925ac1caae2955b27451d244e03831ccae0cb3f4f857648

See more details on using hashes here.

File details

Details for the file orjson-2.6.2-cp37-none-win_amd64.whl.

File metadata

  • Download URL: orjson-2.6.2-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 185.8 kB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for orjson-2.6.2-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 9fe85eeaa81ccf676a3d4f2181c35627bdd911872c6d4daac9f327138375463b
MD5 ee8181448b2b9dd47b0988d5c347d69f
BLAKE2b-256 bd9763a9f6da0a84774d4567f8d68773e0f1e30b9d30f9b814546a68c558d92b

See more details on using hashes here.

File details

Details for the file orjson-2.6.2-cp37-cp37m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: orjson-2.6.2-cp37-cp37m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 194.5 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.7

File hashes

Hashes for orjson-2.6.2-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9fcf3e60dd503d4decd6774efb9772abca280a7a7aa6da5866425b4d8079b4b4
MD5 8ee487504808d8056512ed4edd0b8cd2
BLAKE2b-256 64388152d80f5c66ce68183018c191f4fe5d3619b6c49f3d95483031b386c2ef

See more details on using hashes here.

File details

Details for the file orjson-2.6.2-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: orjson-2.6.2-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 218.4 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.7

File hashes

Hashes for orjson-2.6.2-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 964420f88fd7e1751804e7f240fe017210fc52027961179e01e9bec1fc455e9e
MD5 022c558649ea715e43c3f42bedd66b8d
BLAKE2b-256 64da7afe9c6ddb6dfe8f626f438ebdb556e790fa86ab817579c8af6b76960d6a

See more details on using hashes here.

File details

Details for the file orjson-2.6.2-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

  • Download URL: orjson-2.6.2-cp37-cp37m-macosx_10_7_x86_64.whl
  • Upload date:
  • Size: 200.7 kB
  • Tags: CPython 3.7m, macOS 10.7+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for orjson-2.6.2-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 0463d24b57f9efb4c25202c4ddf837b7ebe56068c9175887f6a4c4835d53dbb4
MD5 cf41185affe30815083885a8bc099626
BLAKE2b-256 503b29f1384d014a7152df3d8234f4dc7089d0e9f7b526846c762807e8728704

See more details on using hashes here.

File details

Details for the file orjson-2.6.2-cp36-none-win_amd64.whl.

File metadata

  • Download URL: orjson-2.6.2-cp36-none-win_amd64.whl
  • Upload date:
  • Size: 185.9 kB
  • Tags: CPython 3.6, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.6.8

File hashes

Hashes for orjson-2.6.2-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 a7ee136c341d159b56556be355b6d322f9808f07b60a44b48e830fe0f8ccf2c7
MD5 ff582e5f899fd78205fbe7c2f7cf22ba
BLAKE2b-256 6a625488c6ddf9dfd572084431a6d3a7b5ba0918c30c288fa088466b9bc47c2d

See more details on using hashes here.

File details

Details for the file orjson-2.6.2-cp36-cp36m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: orjson-2.6.2-cp36-cp36m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 194.5 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.6.10

File hashes

Hashes for orjson-2.6.2-cp36-cp36m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 34708350fe148290bbb876dc4f1e6beb0fdca443ce4f8a595f53ba7247bdd6df
MD5 59bae9446ae7cbf28c0ee68182bb41ea
BLAKE2b-256 a3b60ce8bf3b8613d397d73d0209dee98b1716733af7c07b15fd2552a363e390

See more details on using hashes here.

File details

Details for the file orjson-2.6.2-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: orjson-2.6.2-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 218.5 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.6.10

File hashes

Hashes for orjson-2.6.2-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c39e45178b5aa10c68f3d0c3004e9762cc826e6ccca5d265af91701949c161a2
MD5 62b5a583761957663be6cc9d5a97505f
BLAKE2b-256 a0bc1c752b6a0f774f9c9785d8930130db9ac70cce8fbadf7ab836a9dd6fb4fa

See more details on using hashes here.

File details

Details for the file orjson-2.6.2-cp36-cp36m-macosx_10_7_x86_64.whl.

File metadata

  • Download URL: orjson-2.6.2-cp36-cp36m-macosx_10_7_x86_64.whl
  • Upload date:
  • Size: 200.9 kB
  • Tags: CPython 3.6m, macOS 10.7+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.6.10

File hashes

Hashes for orjson-2.6.2-cp36-cp36m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 86d7d909a422a7db132ed3a8d17810906d8aed7d484296fee9c595b0eea03921
MD5 71172374d832941f9c95146f6c172937
BLAKE2b-256 cbbb748aeedd1db7d97ac088cff621504586ce33e030a0eaba151ec9d1a864db

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page