Skip to main content

Fast, correct Python JSON library supporting dataclasses and datetimes

Project description

orjson

orjson is a fast, correct JSON library for Python. It benchmarks as the fastest Python library for JSON and is more correct than the standard json library or third-party libraries. It serializes dataclass and datetime instances.

Its serialization performance on fixtures of real data is 2.5x to 9.5x the nearest other library and 4x to 12x the standard library. Its deserialization performance on the same fixtures is 1.2x to 1.3x the nearest other library and 1.4x to 2x the standard library.

Its features and drawbacks compared to other Python JSON libraries:

  • serializes dataclass instances 30x faster than other libraries
  • serializes datetime, date, and time instances to RFC 3339 format, e.g., "1970-01-01T00:00:00+00:00"
  • serializes to bytes rather than str, i.e., is not a drop-in replacement
  • serializes str without escaping unicode to ASCII, e.g., "好" rather than "\\u597d"
  • serializes float 10x faster and deserializes twice as fast as other libraries
  • serializes arbitrary types using a default hook
  • has strict UTF-8 conformance, more correct than the standard library
  • has strict JSON conformance in not supporting Nan/Infinity/-Infinity
  • has an option for strict JSON conformance on 53-bit integers with default support for 64-bit
  • does not support subclasses by default, requiring use of default hook
  • does not support pretty printing
  • does not support sorting dict by keys
  • does not provide load() or dump() functions for reading from/writing to file-like objects

orjson supports CPython 3.6, 3.7, 3.8, and 3.9. It distributes wheels for Linux, macOS, and Windows. The manylinux1 wheel differs from PEP 513 in requiring glibc 2.18, released 2013, or later. orjson does not support PyPy.

orjson is licensed under both the Apache 2.0 and MIT licenses. The repository and issue tracker is github.com/ijl/orjson, and patches may be submitted there. There is a CHANGELOG available in the repository.

  1. Usage
    1. Install
    2. Serialize
      1. default
      2. option
    3. Deserialize
  2. Types
    1. dataclass
    2. datetime
    3. float
    4. int
    5. str
    6. UUID
  3. Testing
  4. Performance
    1. Latency
    2. Memory
    3. Reproducing
  5. License

Usage

Install

To install a wheel from PyPI:

pip install --upgrade orjson

To build from source requires Rust on the nightly channel. Package a wheel from a PEP 517 source distribution using pip:

pip wheel --no-binary=orjson orjson

There are no runtime dependencies other than libc. orjson is compatible with systems using glibc earlier than 2.18 if compiled on such a system. Tooling does not currently support musl libc.

Serialize

def dumps(
    __obj: Any,
    default: Optional[Callable[[Any], Any]] = ...,
    option: Optional[int] = ...,
) -> bytes: ...

dumps() serializes Python objects to JSON.

It natively serializes str, dict, list, tuple, int, float, bool, dataclasses.dataclass, typing.TypedDict, datetime.datetime, datetime.date, datetime.time, and None instances. It supports arbitrary types through default. It does not serialize subclasses of supported types natively, with the exception of dataclasses.dataclass subclasses.

It raises JSONEncodeError on an unsupported type. This exception message describes the invalid object.

It raises JSONEncodeError on a str that contains invalid UTF-8.

It raises JSONEncodeError on an integer that exceeds 64 bits by default or, with OPT_STRICT_INTEGER, 53 bits.

It raises JSONEncodeError if a dict has a key of a type other than str.

It raises JSONEncodeError if the output of default recurses to handling by default more than 254 levels deep.

It raises JSONEncodeError on circular references.

It raises JSONEncodeError if a tzinfo on a datetime object is incorrect.

JSONEncodeError is a subclass of TypeError. This is for compatibility with the standard library.

default

To serialize a subclass or arbitrary types, specify default as a callable that returns a supported type. default may be a function, lambda, or callable class instance.

>>> import orjson, numpy
>>>
def default(obj):
    if isinstance(obj, numpy.ndarray):
        return obj.tolist()
>>> orjson.dumps(numpy.random.rand(2, 2), default=default)
b'[[0.08423896597867486,0.854121264944197],[0.8452845446981371,0.19227780743524303]]'

If the default callable does not return an object, and an exception was raised within the default function, an exception describing this is raised. If no object is returned by the default callable but also no exception was raised, it falls through to raising JSONEncodeError on an unsupported type.

The default callable may return an object that itself must be handled by default up to 254 times before an exception is raised.

option

To modify how data is serialized, specify option. Each option is an integer constant in orjson. To specify multiple options, mask them together, e.g., option=orjson.OPT_STRICT_INTEGER | orjson.OPT_NAIVE_UTC.

OPT_NAIVE_UTC

Serialize datetime.datetime objects without a tzinfo as UTC. This has no effect on datetime.datetime objects that have tzinfo set.

>>> import orjson, datetime
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0),
    )
b'"1970-01-01T00:00:00"'
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0),
        option=orjson.OPT_NAIVE_UTC,
    )
b'"1970-01-01T00:00:00+00:00"'
OPT_OMIT_MICROSECONDS

Do not serialize the microsecond field on datetime.datetime and datetime.time instances.

>>> import orjson, datetime
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0, 1),
    )
b'"1970-01-01T00:00:00.000001"'
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0, 1),
        option=orjson.OPT_OMIT_MICROSECONDS,
    )
b'"1970-01-01T00:00:00"'
OPT_SERIALIZE_DATACLASS

Serialize dataclasses.dataclass instances. For more, see dataclass.

OPT_SERIALIZE_UUID

Serialize uuid.UUID instances. For more, see uuid.

OPT_STRICT_INTEGER

Enforce 53-bit limit on integers. The limit is otherwise 64 bits, the same as the Python standard library. For more, see int.

OPT_UTC_Z

Serialize a UTC timezone on datetime.datetime instances as Z instead of +00:00.

>>> import orjson, datetime
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=datetime.timezone.utc),
    )
b'"1970-01-01T00:00:00+00:00"'
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=datetime.timezone.utc),
        option=orjson.OPT_UTC_Z
    )
b'"1970-01-01T00:00:00Z"'

Deserialize

def loads(__obj: Union[bytes, bytearray, str]) -> Any: ...

loads() deserializes JSON to Python objects. It deserializes to dict, list, int, float, str, bool, and None objects.

bytes, bytearray, and str input are accepted. If the input exists as bytes (was read directly from a source), it is recommended to pass bytes. This has lower memory usage and lower latency.

orjson maintains a cache of map keys for the duration of the process. This causes a net reduction in memory usage by avoiding duplicate strings. The keys must be at most 64 chars to be cached and 512 entries are stored.

It raises JSONDecodeError if given an invalid type or invalid JSON. This includes if the input contains NaN, Infinity, or -Infinity, which the standard library allows, but is not valid JSON.

JSONDecodeError is a subclass of json.JSONDecodeError and ValueError. This is for compatibility with the standard library.

Types

dataclass

orjson serializes instances of dataclasses.dataclass natively. It serializes instances 30x as fast as other libraries and avoids a severe slowdown seen in other libraries compared to serializing dict. To serialize instances, specify option=orjson.OPT_SERIALIZE_DATACLASS. The option is required so that users may continue to use default until the implementation allows customizing instances' serialization.

It is supported to pass all variants of dataclasses, including dataclasses using __slots__ (which yields a modest performance improvement), frozen dataclasses, those with optional or default attributes, and subclasses.

Library dict (ms) dataclass (ms) dataclass vs. dict vs. orjson
orjson 0.10 0.19 -46% 1
ujson
rapidjson 0.24 6.48 -96% 33
simplejson 1.06 7.94 -86% 40
json 0.92 7.32 -87% 37

This measures orjson serializing instances natively and other libraries using default to serialize the output of dataclasses.asdict(). This can be reproduced using the pydataclass script.

Dataclasses are serialized as maps, with every attribute serialized and in the order given on class definition:

>>> import dataclasses, orjson, typing

@dataclasses.dataclass
class Member:
    id: int
    active: bool = dataclasses.field(default=False)

@dataclasses.dataclass
class Object:
    id: int
    name: str
    members: typing.List[Member]

>>> orjson.dumps(
        Object(1, "a", [Member(1, True), Member(2)]),
        option=orjson.OPT_SERIALIZE_DATACLASS,
    )
b'{"id":1,"name":"a","members":[{"id":1,"active":true},{"id":2,"active":false}]}'

Users may wish to control how dataclass instances are serialized, e.g., to not serialize an attribute or to change the name of an attribute when serialized. orjson may implement support using the metadata mapping on field attributes, e.g., field(metadata={"json_serialize": False}), if use cases are clear.

datetime

orjson serializes datetime.datetime objects to RFC 3339 format, e.g., "1970-01-01T00:00:00+00:00". This is a subset of ISO 8601 and compatible with isoformat() in the standard library.

>>> import orjson, datetime, pendulum
>>> orjson.dumps(
    datetime.datetime(2018, 12, 1, 2, 3, 4, 9, tzinfo=pendulum.timezone('Australia/Adelaide'))
)
b'"2018-12-01T02:03:04.000009+10:30"'
>>> orjson.dumps(
    datetime.datetime.fromtimestamp(4123518902).replace(tzinfo=datetime.timezone.utc)
)
b'"2100-09-01T21:55:02+00:00"'
>>> orjson.dumps(
    datetime.datetime.fromtimestamp(4123518902)
)
b'"2100-09-01T21:55:02"'

datetime.datetime supports instances with a tzinfo that is None, datetime.timezone.utc or a timezone instance from the pendulum, pytz, or dateutil/arrow libraries.

datetime.time objects must not have a tzinfo.

>>> import orjson, datetime
>>> orjson.dumps(datetime.time(12, 0, 15, 290))
b'"12:00:15.000290"'

datetime.date objects will always serialize.

>>> import orjson, datetime
>>> orjson.dumps(datetime.date(1900, 1, 2))
b'"1900-01-02"'

Errors with tzinfo result in JSONEncodeError being raised.

It is faster to have orjson serialize datetime objects than to do so before calling dumps(). If using an unsupported type such as pendulum.datetime, use default.

float

orjson serializes and deserializes floats with no loss of precision and consistent rounding. The same behavior is observed in rapidjson, simplejson, and json. ujson is inaccurate in both serialization and deserialization, i.e., it modifies the data.

orjson.dumps() serializes Nan, Infinity, and -Infinity, which are not compliant JSON, as null:

>>> import orjson, ujson, rapidjson, json
>>> orjson.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
b'[null,null,null]'
>>> ujson.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
OverflowError: Invalid Inf value when encoding double
>>> rapidjson.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
'[NaN,Infinity,-Infinity]'
>>> json.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
'[NaN, Infinity, -Infinity]'

int

JSON only requires that implementations accept integers with 53-bit precision. orjson will, by default, serialize 64-bit integers. This is compatible with the Python standard library and other non-browser implementations. For transmitting JSON to a web browser or other strict implementations, dumps() can be configured to raise a JSONEncodeError on values exceeding the 53-bit range.

>>> import orjson
>>> orjson.dumps(9007199254740992)
b'9007199254740992'
>>> orjson.dumps(9007199254740992, option=orjson.OPT_STRICT_INTEGER)
JSONEncodeError: Integer exceeds 53-bit range
>>> orjson.dumps(-9007199254740992, option=orjson.OPT_STRICT_INTEGER)
JSONEncodeError: Integer exceeds 53-bit range

str

orjson is strict about UTF-8 conformance. This is stricter than the standard library's json module, which will serialize and deserialize UTF-16 surrogates, e.g., "\ud800", that are invalid UTF-8.

If orjson.dumps() is given a str that does not contain valid UTF-8, orjson.JSONEncodeError is raised. If loads() receives invalid UTF-8, orjson.JSONDecodeError is raised.

orjson and rapidjson are the only compared JSON libraries to consistently error on bad input.

>>> import orjson, ujson, rapidjson, json
>>> orjson.dumps('\ud800')
JSONEncodeError: str is not valid UTF-8: surrogates not allowed
>>> ujson.dumps('\ud800')
UnicodeEncodeError: 'utf-8' codec ...
>>> rapidjson.dumps('\ud800')
UnicodeEncodeError: 'utf-8' codec ...
>>> json.dumps('\ud800')
'"\\ud800"'
>>> orjson.loads('"\\ud800"')
JSONDecodeError: unexpected end of hex escape at line 1 column 8: line 1 column 1 (char 0)
>>> ujson.loads('"\\ud800"')
''
>>> rapidjson.loads('"\\ud800"')
ValueError: Parse error at offset 1: The surrogate pair in string is invalid.
>>> json.loads('"\\ud800"')
'\ud800'

UUID

orjson serializes uuid.UUID instances to RFC 4122 format, e.g., "f81d4fae-7dec-11d0-a765-00a0c91e6bf6". This requires specifying option=orjson.OPT_SERIALIZE_UUID.

>>> import orjson, uuid
>>> orjson.dumps(
    uuid.UUID('f81d4fae-7dec-11d0-a765-00a0c91e6bf6'),
    option=orjson.OPT_SERIALIZE_UUID,
)
b'"f81d4fae-7dec-11d0-a765-00a0c91e6bf6"'
>>> orjson.dumps(
    uuid.uuid5(uuid.NAMESPACE_DNS, "python.org"),
    option=orjson.OPT_SERIALIZE_UUID,
)
b'"886313e1-3b8a-5372-9b90-0c9aee199e5d"'

Testing

The library has comprehensive tests. There are tests against fixtures in the JSONTestSuite and nativejson-benchmark repositories. It is tested to not crash against the Big List of Naughty Strings. It is tested to not leak memory. It is tested to not crash against and not accept invalid UTF-8. There are integration tests exercising the library's use in web servers (gunicorn using multiprocess/forked workers) and when multithreaded. It also uses some tests from the ultrajson library.

Performance

Serialization and deserialization performance of orjson is better than ultrajson, rapidjson, simplejson, or json. The benchmarks are done on fixtures of real data:

  • twitter.json, 631.5KiB, results of a search on Twitter for "一", containing CJK strings, dictionaries of strings and arrays of dictionaries, indented.

  • github.json, 55.8KiB, a GitHub activity feed, containing dictionaries of strings and arrays of dictionaries, not indented.

  • citm_catalog.json, 1.7MiB, concert data, containing nested dictionaries of strings and arrays of integers, indented.

  • canada.json, 2.2MiB, coordinates of the Canadian border in GeoJSON format, containing floats and arrays, indented.

Latency

alt text alt text alt text alt text alt text alt text alt text alt text

twitter.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.75 1297.5 1
ujson 2.06 483.5 2.74
rapidjson 2.12 470.7 2.82
simplejson 3.55 275.2 4.73
json 3.57 277.8 4.75

twitter.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 3.29 302.3 1
ujson 3.65 281.2 1.11
rapidjson 5.6 179.1 1.7
simplejson 5.19 188.3 1.58
json 5.62 184.2 1.71

github.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.08 12363.5 1
ujson 0.2 4834.3 2.55
rapidjson 0.23 4385.4 2.84
simplejson 0.42 2360.3 5.28
json 0.36 2709.1 4.53

github.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.25 3992.4 1
ujson 0.32 3065.1 1.28
rapidjson 0.42 2400.2 1.68
simplejson 0.3 3293.5 1.21
json 0.38 2410 1.54

citm_catalog.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 1.27 746.2 1
ujson 3.63 257.1 2.86
rapidjson 3.52 279.8 2.77
simplejson 14.37 66.6 11.31
json 8.28 120.2 6.52

citm_catalog.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 5.61 175.8 1
ujson 6.78 146.8 1.21
rapidjson 7.71 129.4 1.37
simplejson 9.01 108.8 1.61
json 8.49 116.1 1.51

canada.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 5.28 189.6 1
ujson
rapidjson 69.38 14.3 13.14
simplejson 99.43 9.4 18.84
json 76.44 12.9 14.48

canada.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 22.22 45.1 1
ujson
rapidjson 44.56 21.4 2.01
simplejson 42.99 23.2 1.93
json 44.69 21.4 2.01

If a row is blank, the library did not serialize and deserialize the fixture without modifying it, e.g., returning different values for floating point numbers.

Memory

orjson's memory usage when deserializing is similar to or lower than the standard library and other third-party libraries.

This measures, in the first column, RSS after importing a library and reading the fixture, and in the second column, increases in RSS after repeatedly calling loads() on the fixture.

twitter.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 12.9 2.8
ujson 12.8 4.6
rapidjson 14.5 6.5
simplejson 13.1 2.7
json 12.5 2.4

github.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 12.3 0.3
ujson 12.6 0.5
rapidjson 13.9 0.4
simplejson 12.5 0.3
json 11.7 0.3

citm_catalog.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 13.7 8.5
ujson 13.9 12
rapidjson 15.4 30.2
simplejson 14.1 25
json 13.5 24.9

canada.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 16.5 17.5
ujson
rapidjson 17.9 19.6
simplejson 16.6 21.3
json 16.0 21.3

Reproducing

The above was measured using Python 3.7.4 on Linux with orjson 2.1.0, ujson 1.35, python-rapidson 0.8.0, and simplejson 3.16.0.

The latency results can be reproduced using the pybench and graph scripts. The memory results can be reproduced using the pymem script.

License

orjson was written by ijl <ijl@mailbox.org>, copyright 2018 - 2020, licensed under either the Apache 2 or MIT licenses.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

orjson-2.2.0.tar.gz (509.4 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

orjson-2.2.0-cp39-cp39-manylinux1_x86_64.whl (175.7 kB view details)

Uploaded CPython 3.9

orjson-2.2.0-cp38-none-win_amd64.whl (151.5 kB view details)

Uploaded CPython 3.8Windows x86-64

orjson-2.2.0-cp38-cp38-manylinux1_x86_64.whl (175.7 kB view details)

Uploaded CPython 3.8

orjson-2.2.0-cp38-cp38-macosx_10_7_x86_64.whl (161.8 kB view details)

Uploaded CPython 3.8macOS 10.7+ x86-64

orjson-2.2.0-cp37-none-win_amd64.whl (151.6 kB view details)

Uploaded CPython 3.7Windows x86-64

orjson-2.2.0-cp37-cp37m-manylinux1_x86_64.whl (175.6 kB view details)

Uploaded CPython 3.7m

orjson-2.2.0-cp37-cp37m-macosx_10_7_x86_64.whl (161.8 kB view details)

Uploaded CPython 3.7mmacOS 10.7+ x86-64

orjson-2.2.0-cp36-none-win_amd64.whl (151.7 kB view details)

Uploaded CPython 3.6Windows x86-64

orjson-2.2.0-cp36-cp36m-manylinux1_x86_64.whl (175.8 kB view details)

Uploaded CPython 3.6m

orjson-2.2.0-cp36-cp36m-macosx_10_7_x86_64.whl (162.0 kB view details)

Uploaded CPython 3.6mmacOS 10.7+ x86-64

File details

Details for the file orjson-2.2.0.tar.gz.

File metadata

  • Download URL: orjson-2.2.0.tar.gz
  • Upload date:
  • Size: 509.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.7.5

File hashes

Hashes for orjson-2.2.0.tar.gz
Algorithm Hash digest
SHA256 a2733f56ddeb8d8917c51687392847ca080a8d722ac829f6ac4a835a7e239b89
MD5 708d868cc75425f0f0d74ee6b82011cf
BLAKE2b-256 51d187a76816c8ec7722ac50a0b6f1276a7935391b922e73c0bceb6f9f2bb6c0

See more details on using hashes here.

File details

Details for the file orjson-2.2.0-cp39-cp39-manylinux1_x86_64.whl.

File metadata

  • Download URL: orjson-2.2.0-cp39-cp39-manylinux1_x86_64.whl
  • Upload date:
  • Size: 175.7 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.9.0a2

File hashes

Hashes for orjson-2.2.0-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5d7e23cb629ef548f540ca353d0327248e64eed0a8ec4a9151ab8a52f22f4e86
MD5 160f72b988000e44892563901bcf7f73
BLAKE2b-256 1ac3272f259a1a884ecedc35149c52ad5a1151891c8e1a381dd162df0d611659

See more details on using hashes here.

File details

Details for the file orjson-2.2.0-cp38-none-win_amd64.whl.

File metadata

  • Download URL: orjson-2.2.0-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 151.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.8.1

File hashes

Hashes for orjson-2.2.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 300c33f162bf40a334a25914af775817c1d14bc7b990826a80d316dac6bc320a
MD5 6fe743db114a9dc17d549b3c3ffffcf4
BLAKE2b-256 0fca05d03aebbe03880a48faae7fb2c8e72f8ca402940996d49108255836f38e

See more details on using hashes here.

File details

Details for the file orjson-2.2.0-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: orjson-2.2.0-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 175.7 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.8.1

File hashes

Hashes for orjson-2.2.0-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d76254105885ad2602287c9715a8ae1b314a5d5ad17a553505590a9d6d98e717
MD5 f43b119bddca7d8d15c2bee677719efa
BLAKE2b-256 f996d2c78f8299d8aad1c26878710997eb441c6db1fca39757ada203e7ed2d08

See more details on using hashes here.

File details

Details for the file orjson-2.2.0-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

  • Download URL: orjson-2.2.0-cp38-cp38-macosx_10_7_x86_64.whl
  • Upload date:
  • Size: 161.8 kB
  • Tags: CPython 3.8, macOS 10.7+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.8.1

File hashes

Hashes for orjson-2.2.0-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 188926d10b20fb09c8d3dea6b22dcd814b0eaf8df2e75981e8e1e04b60c33633
MD5 3dc77a8815729e429da42a211589c7b9
BLAKE2b-256 9786b74a261553c4c719f974f1ad2d21741e2670ae82043ff941fc649dacfe4b

See more details on using hashes here.

File details

Details for the file orjson-2.2.0-cp37-none-win_amd64.whl.

File metadata

  • Download URL: orjson-2.2.0-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 151.6 kB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.7.6

File hashes

Hashes for orjson-2.2.0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 c5614bab5a1338ae6ddb62eae56144cf81c3643d96b62b8f114b5314a34beae9
MD5 73f7029f4d5a41daae99e54ce73c0b17
BLAKE2b-256 c4dca9334bdf0121eb9ec9da09527f129f137fd0ace500f84014cafa10a8b0ac

See more details on using hashes here.

File details

Details for the file orjson-2.2.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: orjson-2.2.0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 175.6 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.7.6

File hashes

Hashes for orjson-2.2.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a2b1a030d46a5fc64858bf16f1591e093c30a132d1ef5fc8ea7c15896addc34c
MD5 dc7cf39098d34ee69115f4e3c3a096c7
BLAKE2b-256 41c3062689b9e57ac29fdb4e574f7a0e9f0d81505b446e5018ce521a7f102ef6

See more details on using hashes here.

File details

Details for the file orjson-2.2.0-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

  • Download URL: orjson-2.2.0-cp37-cp37m-macosx_10_7_x86_64.whl
  • Upload date:
  • Size: 161.8 kB
  • Tags: CPython 3.7m, macOS 10.7+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.7.6

File hashes

Hashes for orjson-2.2.0-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 dacdcf193b7c8a5519cf04c4c02379a7a1d913e6e27c546d0e632b108f2ef15c
MD5 48b89dc89b91b5b8443b6dca33245243
BLAKE2b-256 7e946ba7e533fffd0af2ca452055066e82439b614e1be216936ae0778b5212a6

See more details on using hashes here.

File details

Details for the file orjson-2.2.0-cp36-none-win_amd64.whl.

File metadata

  • Download URL: orjson-2.2.0-cp36-none-win_amd64.whl
  • Upload date:
  • Size: 151.7 kB
  • Tags: CPython 3.6, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.6.8

File hashes

Hashes for orjson-2.2.0-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 f549e39d76a9f770586c46ce79777ad2dadb5dc7356cc5f2c96e4e77ad5088a5
MD5 f69f00cf86fcd5718970fb7895b43a82
BLAKE2b-256 70e00b1ccd171920422880a172e3828d97f44e8ca5e21e9d0a94d5c15e0f8897

See more details on using hashes here.

File details

Details for the file orjson-2.2.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: orjson-2.2.0-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 175.8 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.6.9

File hashes

Hashes for orjson-2.2.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4e90977f3d11b4c916a17b0d5129f1d45b258fdc6fe49980cfd4a03ec64e3017
MD5 b2a152b39516ad3a586cc8402632f2b3
BLAKE2b-256 038d9dc908ab52ad817c69d0b8725380de6be3ecc8d08882ff5cbdfde0da29c6

See more details on using hashes here.

File details

Details for the file orjson-2.2.0-cp36-cp36m-macosx_10_7_x86_64.whl.

File metadata

  • Download URL: orjson-2.2.0-cp36-cp36m-macosx_10_7_x86_64.whl
  • Upload date:
  • Size: 162.0 kB
  • Tags: CPython 3.6m, macOS 10.7+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.6.10

File hashes

Hashes for orjson-2.2.0-cp36-cp36m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 961d1a51fc8611f8019cfd1acb4cf1971f2f2fc4963cba6eddf73f35bebb08ab
MD5 816328351e53c253b171c2ae216dd951
BLAKE2b-256 6a736d735d8a2335709a59d19c752fef717c2d195b0cbcc686f518a7e7d3d4e7

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page