Skip to main content

Fast, correct Python JSON library supporting dataclasses, datetimes, and numpy

Project description

orjson

orjson is a fast, correct JSON library for Python. It benchmarks as the fastest Python library for JSON and is more correct than the standard json library or other third-party libraries. It serializes dataclass, datetime, numpy, and UUID instances natively.

Its features and drawbacks compared to other Python JSON libraries:

  • serializes dataclass instances 40-50x as fast as other libraries
  • serializes datetime, date, and time instances to RFC 3339 format, e.g., "1970-01-01T00:00:00+00:00"
  • serializes numpy.ndarray instances 4-12x as fast with 0.3x the memory usage of other libraries
  • pretty prints 10x to 20x as fast as the standard library
  • serializes to bytes rather than str, i.e., is not a drop-in replacement
  • serializes str without escaping unicode to ASCII, e.g., "好" rather than "\\u597d"
  • serializes float 10x as fast and deserializes twice as fast as other libraries
  • serializes subclasses of str, int, list, and dict natively, requiring default to specify how to serialize others
  • serializes arbitrary types using a default hook
  • has strict UTF-8 conformance, more correct than the standard library
  • has strict JSON conformance in not supporting Nan/Infinity/-Infinity
  • has an option for strict JSON conformance on 53-bit integers with default support for 64-bit
  • does not provide load() or dump() functions for reading from/writing to file-like objects

orjson supports CPython 3.7, 3.8, 3.9, and 3.10. It distributes x86_64/amd64, aarch64/armv8, and arm7 wheels for Linux, amd64 and aarch64 wheels for macOS, and amd64 wheels for Windows. orjson does not support PyPy. Releases follow semantic versioning and serializing a new object type without an opt-in flag is considered a breaking change.

orjson is licensed under both the Apache 2.0 and MIT licenses. The repository and issue tracker is github.com/ijl/orjson, and patches may be submitted there. There is a CHANGELOG available in the repository.

  1. Usage
    1. Install
    2. Quickstart
    3. Migrating
    4. Serialize
      1. default
      2. option
    5. Deserialize
  2. Types
    1. dataclass
    2. datetime
    3. enum
    4. float
    5. int
    6. numpy
    7. str
    8. uuid
  3. Testing
  4. Performance
    1. Latency
    2. Memory
    3. Reproducing
  5. Questions
  6. Packaging
  7. License

Usage

Install

To install a wheel from PyPI:

pip install --upgrade "pip>=20.3" # manylinux_x_y, universal2 wheel support
pip install --upgrade orjson

To build a wheel, see packaging.

Quickstart

This is an example of serializing, with options specified, and deserializing:

>>> import orjson, datetime, numpy
>>> data = {
    "type": "job",
    "created_at": datetime.datetime(1970, 1, 1),
    "status": "🆗",
    "payload": numpy.array([[1, 2], [3, 4]]),
}
>>> orjson.dumps(data, option=orjson.OPT_NAIVE_UTC | orjson.OPT_SERIALIZE_NUMPY)
b'{"type":"job","created_at":"1970-01-01T00:00:00+00:00","status":"\xf0\x9f\x86\x97","payload":[[1,2],[3,4]]}'
>>> orjson.loads(_)
{'type': 'job', 'created_at': '1970-01-01T00:00:00+00:00', 'status': '🆗', 'payload': [[1, 2], [3, 4]]}

Migrating

orjson version 3 serializes more types than version 2. Subclasses of str, int, dict, and list are now serialized. This is faster and more similar to the standard library. It can be disabled with orjson.OPT_PASSTHROUGH_SUBCLASS.dataclasses.dataclass instances are now serialized by default and cannot be customized in a default function unless option=orjson.OPT_PASSTHROUGH_DATACLASS is specified. uuid.UUID instances are serialized by default. For any type that is now serialized, implementations in a default function and options enabling them can be removed but do not need to be. There was no change in deserialization.

To migrate from the standard library, the largest difference is that orjson.dumps returns bytes and json.dumps returns a str. Users with dict objects using non-str keys should specify option=orjson.OPT_NON_STR_KEYS. sort_keys is replaced by option=orjson.OPT_SORT_KEYS. indent is replaced by option=orjson.OPT_INDENT_2 and other levels of indentation are not supported.

Serialize

def dumps(
    __obj: Any,
    default: Optional[Callable[[Any], Any]] = ...,
    option: Optional[int] = ...,
) -> bytes: ...

dumps() serializes Python objects to JSON.

It natively serializes str, dict, list, tuple, int, float, bool, dataclasses.dataclass, typing.TypedDict, datetime.datetime, datetime.date, datetime.time, uuid.UUID, numpy.ndarray, and None instances. It supports arbitrary types through default. It serializes subclasses of str, int, dict, list, dataclasses.dataclass, and enum.Enum. It does not serialize subclasses of tuple to avoid serializing namedtuple objects as arrays. To avoid serializing subclasses, specify the option orjson.OPT_PASSTHROUGH_SUBCLASS.

The output is a bytes object containing UTF-8.

The global interpreter lock (GIL) is held for the duration of the call.

It raises JSONEncodeError on an unsupported type. This exception message describes the invalid object with the error message Type is not JSON serializable: .... To fix this, specify default.

It raises JSONEncodeError on a str that contains invalid UTF-8.

It raises JSONEncodeError on an integer that exceeds 64 bits by default or, with OPT_STRICT_INTEGER, 53 bits.

It raises JSONEncodeError if a dict has a key of a type other than str, unless OPT_NON_STR_KEYS is specified.

It raises JSONEncodeError if the output of default recurses to handling by default more than 254 levels deep.

It raises JSONEncodeError on circular references.

It raises JSONEncodeError if a tzinfo on a datetime object is unsupported.

JSONEncodeError is a subclass of TypeError. This is for compatibility with the standard library.

default

To serialize a subclass or arbitrary types, specify default as a callable that returns a supported type. default may be a function, lambda, or callable class instance. To specify that a type was not handled by default, raise an exception such as TypeError.

>>> import orjson, decimal
>>>
def default(obj):
    if isinstance(obj, decimal.Decimal):
        return str(obj)
    raise TypeError

>>> orjson.dumps(decimal.Decimal("0.0842389659712649442845"))
JSONEncodeError: Type is not JSON serializable: decimal.Decimal
>>> orjson.dumps(decimal.Decimal("0.0842389659712649442845"), default=default)
b'"0.0842389659712649442845"'
>>> orjson.dumps({1, 2}, default=default)
orjson.JSONEncodeError: Type is not JSON serializable: set

The default callable may return an object that itself must be handled by default up to 254 times before an exception is raised.

It is important that default raise an exception if a type cannot be handled. Python otherwise implicitly returns None, which appears to the caller like a legitimate value and is serialized:

>>> import orjson, json, rapidjson
>>>
def default(obj):
    if isinstance(obj, decimal.Decimal):
        return str(obj)

>>> orjson.dumps({"set":{1, 2}}, default=default)
b'{"set":null}'
>>> json.dumps({"set":{1, 2}}, default=default)
'{"set":null}'
>>> rapidjson.dumps({"set":{1, 2}}, default=default)
'{"set":null}'

option

To modify how data is serialized, specify option. Each option is an integer constant in orjson. To specify multiple options, mask them together, e.g., option=orjson.OPT_STRICT_INTEGER | orjson.OPT_NAIVE_UTC.

OPT_APPEND_NEWLINE

Append \n to the output. This is a convenience and optimization for the pattern of dumps(...) + "\n". bytes objects are immutable and this pattern copies the original contents.

>>> import orjson
>>> orjson.dumps([])
b"[]"
>>> orjson.dumps([], option=orjson.OPT_APPEND_NEWLINE)
b"[]\n"
OPT_INDENT_2

Pretty-print output with an indent of two spaces. This is equivalent to indent=2 in the standard library. Pretty printing is slower and the output larger. orjson is the fastest compared library at pretty printing and has much less of a slowdown to pretty print than the standard library does. This option is compatible with all other options.

>>> import orjson
>>> orjson.dumps({"a": "b", "c": {"d": True}, "e": [1, 2]})
b'{"a":"b","c":{"d":true},"e":[1,2]}'
>>> orjson.dumps(
    {"a": "b", "c": {"d": True}, "e": [1, 2]},
    option=orjson.OPT_INDENT_2
)
b'{\n  "a": "b",\n  "c": {\n    "d": true\n  },\n  "e": [\n    1,\n    2\n  ]\n}'

If displayed, the indentation and linebreaks appear like this:

{
  "a": "b",
  "c": {
    "d": true
  },
  "e": [
    1,
    2
  ]
}

This measures serializing the github.json fixture as compact (52KiB) or pretty (64KiB):

Library compact (ms) pretty (ms) vs. orjson
orjson 0.06 0.07 1.0
ujson 0.18 0.19 2.8
rapidjson 0.22
simplejson 0.35 1.49 21.4
json 0.36 1.19 17.2

This measures serializing the citm_catalog.json fixture, more of a worst case due to the amount of nesting and newlines, as compact (489KiB) or pretty (1.1MiB):

Library compact (ms) pretty (ms) vs. orjson
orjson 0.88 1.73 1.0
ujson 3.73 4.52 2.6
rapidjson 3.54
simplejson 11.77 72.06 41.6
json 6.71 55.22 31.9

rapidjson is blank because it does not support pretty printing. This can be reproduced using the pyindent script.

OPT_NAIVE_UTC

Serialize datetime.datetime objects without a tzinfo as UTC. This has no effect on datetime.datetime objects that have tzinfo set.

>>> import orjson, datetime
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0),
    )
b'"1970-01-01T00:00:00"'
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0),
        option=orjson.OPT_NAIVE_UTC,
    )
b'"1970-01-01T00:00:00+00:00"'
OPT_NON_STR_KEYS

Serialize dict keys of type other than str. This allows dict keys to be one of str, int, float, bool, None, datetime.datetime, datetime.date, datetime.time, enum.Enum, and uuid.UUID. For comparison, the standard library serializes str, int, float, bool or None by default. orjson benchmarks as being faster at serializing non-str keys than other libraries. This option is slower for str keys than the default.

>>> import orjson, datetime, uuid
>>> orjson.dumps(
        {uuid.UUID("7202d115-7ff3-4c81-a7c1-2a1f067b1ece"): [1, 2, 3]},
        option=orjson.OPT_NON_STR_KEYS,
    )
b'{"7202d115-7ff3-4c81-a7c1-2a1f067b1ece":[1,2,3]}'
>>> orjson.dumps(
        {datetime.datetime(1970, 1, 1, 0, 0, 0): [1, 2, 3]},
        option=orjson.OPT_NON_STR_KEYS | orjson.OPT_NAIVE_UTC,
    )
b'{"1970-01-01T00:00:00+00:00":[1,2,3]}'

These types are generally serialized how they would be as values, e.g., datetime.datetime is still an RFC 3339 string and respects options affecting it. The exception is that int serialization does not respect OPT_STRICT_INTEGER.

This option has the risk of creating duplicate keys. This is because non-str objects may serialize to the same str as an existing key, e.g., {"1": true, 1: false}. The last key to be inserted to the dict will be serialized last and a JSON deserializer will presumably take the last occurrence of a key (in the above, false). The first value will be lost.

This option is compatible with orjson.OPT_SORT_KEYS. If sorting is used, note the sort is unstable and will be unpredictable for duplicate keys.

>>> import orjson, datetime
>>> orjson.dumps(
    {"other": 1, datetime.date(1970, 1, 5): 2, datetime.date(1970, 1, 3): 3},
    option=orjson.OPT_NON_STR_KEYS | orjson.OPT_SORT_KEYS
)
b'{"1970-01-03":3,"1970-01-05":2,"other":1}'

This measures serializing 589KiB of JSON comprising a list of 100 dict in which each dict has both 365 randomly-sorted int keys representing epoch timestamps as well as one str key and the value for each key is a single integer. In "str keys", the keys were converted to str before serialization, and orjson still specifes option=orjson.OPT_NON_STR_KEYS (which is always somewhat slower).

Library str keys (ms) int keys (ms) int keys sorted (ms)
orjson 1.53 2.16 4.29
ujson 3.07 5.65
rapidjson 4.29
simplejson 11.24 14.50 21.86
json 7.17 8.49

ujson is blank for sorting because it segfaults. json is blank because it raises TypeError on attempting to sort before converting all keys to str. rapidjson is blank because it does not support non-str keys. This can be reproduced using the pynonstr script.

OPT_OMIT_MICROSECONDS

Do not serialize the microsecond field on datetime.datetime and datetime.time instances.

>>> import orjson, datetime
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0, 1),
    )
b'"1970-01-01T00:00:00.000001"'
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0, 1),
        option=orjson.OPT_OMIT_MICROSECONDS,
    )
b'"1970-01-01T00:00:00"'
OPT_PASSTHROUGH_DATACLASS

Passthrough dataclasses.dataclass instances to default. This allows customizing their output but is much slower.

>>> import orjson, dataclasses
>>>
@dataclasses.dataclass
class User:
    id: str
    name: str
    password: str

def default(obj):
    if isinstance(obj, User):
        return {"id": obj.id, "name": obj.name}
    raise TypeError

>>> orjson.dumps(User("3b1", "asd", "zxc"))
b'{"id":"3b1","name":"asd","password":"zxc"}'
>>> orjson.dumps(User("3b1", "asd", "zxc"), option=orjson.OPT_PASSTHROUGH_DATACLASS)
TypeError: Type is not JSON serializable: User
>>> orjson.dumps(
        User("3b1", "asd", "zxc"),
        option=orjson.OPT_PASSTHROUGH_DATACLASS,
        default=default,
    )
b'{"id":"3b1","name":"asd"}'
OPT_PASSTHROUGH_DATETIME

Passthrough datetime.datetime, datetime.date, and datetime.time instances to default. This allows serializing datetimes to a custom format, e.g., HTTP dates:

>>> import orjson, datetime
>>>
def default(obj):
    if isinstance(obj, datetime.datetime):
        return obj.strftime("%a, %d %b %Y %H:%M:%S GMT")
    raise TypeError

>>> orjson.dumps({"created_at": datetime.datetime(1970, 1, 1)})
b'{"created_at":"1970-01-01T00:00:00"}'
>>> orjson.dumps({"created_at": datetime.datetime(1970, 1, 1)}, option=orjson.OPT_PASSTHROUGH_DATETIME)
TypeError: Type is not JSON serializable: datetime.datetime
>>> orjson.dumps(
        {"created_at": datetime.datetime(1970, 1, 1)},
        option=orjson.OPT_PASSTHROUGH_DATETIME,
        default=default,
    )
b'{"created_at":"Thu, 01 Jan 1970 00:00:00 GMT"}'

This does not affect datetimes in dict keys if using OPT_NON_STR_KEYS.

OPT_PASSTHROUGH_SUBCLASS

Passthrough subclasses of builtin types to default.

>>> import orjson
>>>
class Secret(str):
    pass

def default(obj):
    if isinstance(obj, Secret):
        return "******"
    raise TypeError

>>> orjson.dumps(Secret("zxc"))
b'"zxc"'
>>> orjson.dumps(Secret("zxc"), option=orjson.OPT_PASSTHROUGH_SUBCLASS)
TypeError: Type is not JSON serializable: Secret
>>> orjson.dumps(Secret("zxc"), option=orjson.OPT_PASSTHROUGH_SUBCLASS, default=default)
b'"******"'

This does not affect serializing subclasses as dict keys if using OPT_NON_STR_KEYS.

OPT_SERIALIZE_DATACLASS

This is deprecated and has no effect in version 3. In version 2 this was required to serialize dataclasses.dataclass instances. For more, see dataclass.

OPT_SERIALIZE_NUMPY

Serialize numpy.ndarray instances. For more, see numpy.

OPT_SERIALIZE_UUID

This is deprecated and has no effect in version 3. In version 2 this was required to serialize uuid.UUID instances. For more, see UUID.

OPT_SORT_KEYS

Serialize dict keys in sorted order. The default is to serialize in an unspecified order. This is equivalent to sort_keys=True in the standard library.

This can be used to ensure the order is deterministic for hashing or tests. It has a substantial performance penalty and is not recommended in general.

>>> import orjson
>>> orjson.dumps({"b": 1, "c": 2, "a": 3})
b'{"b":1,"c":2,"a":3}'
>>> orjson.dumps({"b": 1, "c": 2, "a": 3}, option=orjson.OPT_SORT_KEYS)
b'{"a":3,"b":1,"c":2}'

This measures serializing the twitter.json fixture unsorted and sorted:

Library unsorted (ms) sorted (ms) vs. orjson
orjson 0.5 0.92 1
ujson 1.61 2.48 2.7
rapidjson 2.17 2.89 3.2
simplejson 3.56 5.13 5.6
json 3.59 4.59 5

The benchmark can be reproduced using the pysort script.

The sorting is not collation/locale-aware:

>>> import orjson
>>> orjson.dumps({"a": 1, "ä": 2, "A": 3}, option=orjson.OPT_SORT_KEYS)
b'{"A":3,"a":1,"\xc3\xa4":2}'

This is the same sorting behavior as the standard library, rapidjson, simplejson, and ujson.

dataclass also serialize as maps but this has no effect on them.

OPT_STRICT_INTEGER

Enforce 53-bit limit on integers. The limit is otherwise 64 bits, the same as the Python standard library. For more, see int.

OPT_UTC_Z

Serialize a UTC timezone on datetime.datetime instances as Z instead of +00:00.

>>> import orjson, datetime, zoneinfo
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=zoneinfo.ZoneInfo("UTC")),
    )
b'"1970-01-01T00:00:00+00:00"'
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=zoneinfo.ZoneInfo("UTC")),
        option=orjson.OPT_UTC_Z
    )
b'"1970-01-01T00:00:00Z"'

Deserialize

def loads(__obj: Union[bytes, bytearray, memoryview, str]) -> Any: ...

loads() deserializes JSON to Python objects. It deserializes to dict, list, int, float, str, bool, and None objects.

bytes, bytearray, memoryview, and str input are accepted. If the input exists as a memoryview, bytearray, or bytes object, it is recommended to pass these directly rather than creating an unnecessary str object. This has lower memory usage and lower latency.

The input must be valid UTF-8.

orjson maintains a cache of map keys for the duration of the process. This causes a net reduction in memory usage by avoiding duplicate strings. The keys must be at most 64 bytes to be cached and 512 entries are stored.

The global interpreter lock (GIL) is held for the duration of the call.

It raises JSONDecodeError if given an invalid type or invalid JSON. This includes if the input contains NaN, Infinity, or -Infinity, which the standard library allows, but is not valid JSON.

JSONDecodeError is a subclass of json.JSONDecodeError and ValueError. This is for compatibility with the standard library.

Types

dataclass

orjson serializes instances of dataclasses.dataclass natively. It serializes instances 40-50x as fast as other libraries and avoids a severe slowdown seen in other libraries compared to serializing dict.

It is supported to pass all variants of dataclasses, including dataclasses using __slots__, frozen dataclasses, those with optional or default attributes, and subclasses. There is a performance benefit to not using __slots__.

Library dict (ms) dataclass (ms) vs. orjson
orjson 1.40 1.60 1
ujson
rapidjson 3.64 68.48 42
simplejson 14.21 92.18 57
json 13.28 94.90 59

This measures serializing 555KiB of JSON, orjson natively and other libraries using default to serialize the output of dataclasses.asdict(). This can be reproduced using the pydataclass script.

Dataclasses are serialized as maps, with every attribute serialized and in the order given on class definition:

>>> import dataclasses, orjson, typing

@dataclasses.dataclass
class Member:
    id: int
    active: bool = dataclasses.field(default=False)

@dataclasses.dataclass
class Object:
    id: int
    name: str
    members: typing.List[Member]

>>> orjson.dumps(Object(1, "a", [Member(1, True), Member(2)]))
b'{"id":1,"name":"a","members":[{"id":1,"active":true},{"id":2,"active":false}]}'

datetime

orjson serializes datetime.datetime objects to RFC 3339 format, e.g., "1970-01-01T00:00:00+00:00". This is a subset of ISO 8601 and is compatible with isoformat() in the standard library.

>>> import orjson, datetime, zoneinfo
>>> orjson.dumps(
    datetime.datetime(2018, 12, 1, 2, 3, 4, 9, tzinfo=zoneinfo.ZoneInfo("Australia/Adelaide"))
)
b'"2018-12-01T02:03:04.000009+10:30"'
>>> orjson.dumps(
    datetime.datetime(2100, 9, 1, 21, 55, 2).replace(tzinfo=zoneinfo.ZoneInfo("UTC"))
)
b'"2100-09-01T21:55:02+00:00"'
>>> orjson.dumps(
    datetime.datetime(2100, 9, 1, 21, 55, 2)
)
b'"2100-09-01T21:55:02"'

datetime.datetime supports instances with a tzinfo that is None, datetime.timezone.utc, a timezone instance from the python3.9+ zoneinfo module, or a timezone instance from the third-party pendulum, pytz, or dateutil/arrow libraries.

It is fastest to use the standard library's zoneinfo.ZoneInfo for timezones.

datetime.time objects must not have a tzinfo.

>>> import orjson, datetime
>>> orjson.dumps(datetime.time(12, 0, 15, 290))
b'"12:00:15.000290"'

datetime.date objects will always serialize.

>>> import orjson, datetime
>>> orjson.dumps(datetime.date(1900, 1, 2))
b'"1900-01-02"'

Errors with tzinfo result in JSONEncodeError being raised.

It is faster to have orjson serialize datetime objects than to do so before calling dumps(). If using an unsupported type such as pendulum.datetime, use default.

To disable serialization of datetime objects specify the option orjson.OPT_PASSTHROUGH_DATETIME.

To use "Z" suffix instead of "+00:00" to indicate UTC ("Zulu") time, use the option orjson.OPT_UTC_Z.

To assume datetimes without timezone are UTC, use the option orjson.OPT_NAIVE_UTC.

enum

orjson serializes enums natively. Options apply to their values.

>>> import enum, datetime, orjson
>>>
class DatetimeEnum(enum.Enum):
    EPOCH = datetime.datetime(1970, 1, 1, 0, 0, 0)
>>> orjson.dumps(DatetimeEnum.EPOCH)
b'"1970-01-01T00:00:00"'
>>> orjson.dumps(DatetimeEnum.EPOCH, option=orjson.OPT_NAIVE_UTC)
b'"1970-01-01T00:00:00+00:00"'

Enums with members that are not supported types can be serialized using default:

>>> import enum, orjson
>>>
class Custom:
    def __init__(self, val):
        self.val = val

def default(obj):
    if isinstance(obj, Custom):
        return obj.val
    raise TypeError

class CustomEnum(enum.Enum):
    ONE = Custom(1)

>>> orjson.dumps(CustomEnum.ONE, default=default)
b'1'

float

orjson serializes and deserializes double precision floats with no loss of precision and consistent rounding.

orjson.dumps() serializes Nan, Infinity, and -Infinity, which are not compliant JSON, as null:

>>> import orjson, ujson, rapidjson, json
>>> orjson.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
b'[null,null,null]'
>>> ujson.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
OverflowError: Invalid Inf value when encoding double
>>> rapidjson.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
'[NaN,Infinity,-Infinity]'
>>> json.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
'[NaN, Infinity, -Infinity]'

int

orjson serializes and deserializes 64-bit integers by default. The range supported is a signed 64-bit integer's minimum (-9223372036854775807) to an unsigned 64-bit integer's maximum (18446744073709551615). This is widely compatible, but there are implementations that only support 53-bits for integers, e.g., web browsers. For those implementations, dumps() can be configured to raise a JSONEncodeError on values exceeding the 53-bit range.

>>> import orjson
>>> orjson.dumps(9007199254740992)
b'9007199254740992'
>>> orjson.dumps(9007199254740992, option=orjson.OPT_STRICT_INTEGER)
JSONEncodeError: Integer exceeds 53-bit range
>>> orjson.dumps(-9007199254740992, option=orjson.OPT_STRICT_INTEGER)
JSONEncodeError: Integer exceeds 53-bit range

numpy

orjson natively serializes numpy.ndarray and individual numpy.float64, numpy.float32, numpy.int64, numpy.int32, numpy.int8, numpy.uint64, numpy.uint32, numpy.uint8, numpy.uintp, or numpy.intp, and numpy.datetime64 instances.

orjson is faster than all compared libraries at serializing numpy instances. Serializing numpy data requires specifying option=orjson.OPT_SERIALIZE_NUMPY.

>>> import orjson, numpy
>>> orjson.dumps(
        numpy.array([[1, 2, 3], [4, 5, 6]]),
        option=orjson.OPT_SERIALIZE_NUMPY,
)
b'[[1,2,3],[4,5,6]]'

The array must be a contiguous C array (C_CONTIGUOUS) and one of the supported datatypes.

numpy.datetime64 instances are serialized as RFC 3339 strings and datetime options affect them.

>>> import orjson, numpy
>>> orjson.dumps(
        numpy.datetime64("2021-01-01T00:00:00.172"),
        option=orjson.OPT_SERIALIZE_NUMPY,
)
b'"2021-01-01T00:00:00.172000"'
>>> orjson.dumps(
        numpy.datetime64("2021-01-01T00:00:00.172"),
        option=(
            orjson.OPT_SERIALIZE_NUMPY |
            orjson.OPT_NAIVE_UTC |
            orjson.OPT_OMIT_MICROSECONDS
        ),
)
b'"2021-01-01T00:00:00+00:00"'

If an array is not a contiguous C array, contains an supported datatype, or contains a numpy.datetime64 using an unsupported representation (e.g., picoseconds), orjson falls through to default. In default, obj.tolist() can be specified. If an array is malformed, which is not expected, orjson.JSONEncodeError is raised.

This measures serializing 92MiB of JSON from an numpy.ndarray with dimensions of (50000, 100) and numpy.float64 values:

Library Latency (ms) RSS diff (MiB) vs. orjson
orjson 194 99 1.0
ujson
rapidjson 3,048 309 15.7
simplejson 3,023 297 15.6
json 3,133 297 16.1

This measures serializing 100MiB of JSON from an numpy.ndarray with dimensions of (100000, 100) and numpy.int32 values:

Library Latency (ms) RSS diff (MiB) vs. orjson
orjson 178 115 1.0
ujson
rapidjson 1,512 551 8.5
simplejson 1,606 504 9.0
json 1,506 503 8.4

This measures serializing 105MiB of JSON from an numpy.ndarray with dimensions of (100000, 200) and numpy.bool values:

Library Latency (ms) RSS diff (MiB) vs. orjson
orjson 157 120 1.0
ujson
rapidjson 710 327 4.5
simplejson 931 398 5.9
json 996 400 6.3

In these benchmarks, orjson serializes natively, ujson is blank because it does not support a default parameter, and the other libraries serialize ndarray.tolist() via default. The RSS column measures peak memory usage during serialization. This can be reproduced using the pynumpy script.

orjson does not have an installation or compilation dependency on numpy. The implementation is independent, reading numpy.ndarray using PyArrayInterface.

str

orjson is strict about UTF-8 conformance. This is stricter than the standard library's json module, which will serialize and deserialize UTF-16 surrogates, e.g., "\ud800", that are invalid UTF-8.

If orjson.dumps() is given a str that does not contain valid UTF-8, orjson.JSONEncodeError is raised. If loads() receives invalid UTF-8, orjson.JSONDecodeError is raised.

orjson and rapidjson are the only compared JSON libraries to consistently error on bad input.

>>> import orjson, ujson, rapidjson, json
>>> orjson.dumps('\ud800')
JSONEncodeError: str is not valid UTF-8: surrogates not allowed
>>> ujson.dumps('\ud800')
UnicodeEncodeError: 'utf-8' codec ...
>>> rapidjson.dumps('\ud800')
UnicodeEncodeError: 'utf-8' codec ...
>>> json.dumps('\ud800')
'"\\ud800"'
>>> orjson.loads('"\\ud800"')
JSONDecodeError: unexpected end of hex escape at line 1 column 8: line 1 column 1 (char 0)
>>> ujson.loads('"\\ud800"')
''
>>> rapidjson.loads('"\\ud800"')
ValueError: Parse error at offset 1: The surrogate pair in string is invalid.
>>> json.loads('"\\ud800"')
'\ud800'

To make a best effort at deserializing bad input, first decode bytes using the replace or lossy argument for errors:

>>> import orjson
>>> orjson.loads(b'"\xed\xa0\x80"')
JSONDecodeError: str is not valid UTF-8: surrogates not allowed
>>> orjson.loads(b'"\xed\xa0\x80"'.decode("utf-8", "replace"))
'���'

uuid

orjson serializes uuid.UUID instances to RFC 4122 format, e.g., "f81d4fae-7dec-11d0-a765-00a0c91e6bf6".

>>> import orjson, uuid
>>> orjson.dumps(uuid.UUID('f81d4fae-7dec-11d0-a765-00a0c91e6bf6'))
b'"f81d4fae-7dec-11d0-a765-00a0c91e6bf6"'
>>> orjson.dumps(uuid.uuid5(uuid.NAMESPACE_DNS, "python.org"))
b'"886313e1-3b8a-5372-9b90-0c9aee199e5d"'

Testing

The library has comprehensive tests. There are tests against fixtures in the JSONTestSuite and nativejson-benchmark repositories. It is tested to not crash against the Big List of Naughty Strings. It is tested to not leak memory. It is tested to not crash against and not accept invalid UTF-8. There are integration tests exercising the library's use in web servers (gunicorn using multiprocess/forked workers) and when multithreaded. It also uses some tests from the ultrajson library.

orjson is the most correct of the compared libraries. This graph shows how each library handles a combined 342 JSON fixtures from the JSONTestSuite and nativejson-benchmark tests:

Library Invalid JSON documents not rejected Valid JSON documents not deserialized
orjson 0 0
ujson 38 0
rapidjson 6 0
simplejson 13 0
json 17 0

This shows that all libraries deserialize valid JSON but only orjson correctly rejects the given invalid JSON fixtures. Errors are largely due to accepting invalid strings and numbers.

The graph above can be reproduced using the pycorrectness script.

Performance

Serialization and deserialization performance of orjson is better than ultrajson, rapidjson, simplejson, or json. The benchmarks are done on fixtures of real data:

  • twitter.json, 631.5KiB, results of a search on Twitter for "一", containing CJK strings, dictionaries of strings and arrays of dictionaries, indented.

  • github.json, 55.8KiB, a GitHub activity feed, containing dictionaries of strings and arrays of dictionaries, not indented.

  • citm_catalog.json, 1.7MiB, concert data, containing nested dictionaries of strings and arrays of integers, indented.

  • canada.json, 2.2MiB, coordinates of the Canadian border in GeoJSON format, containing floats and arrays, indented.

Latency

twitter.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.41 2419.7 1
ujson 1.8 555.2 4.36
rapidjson 1.26 795 3.05
simplejson 2.27 440.6 5.5
json 1.83 548.2 4.42

twitter.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.85 1173 1
ujson 1.88 532.1 2.2
rapidjson 2.7 371 3.16
simplejson 2.16 463.1 2.53
json 2.33 429.7 2.73

github.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.04 23751.2 1
ujson 0.18 5498.1 4.31
rapidjson 0.1 9557 2.48
simplejson 0.25 3989.7 5.94
json 0.18 5457.6 4.36

github.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.07 14680.6 1
ujson 0.19 5224.3 2.81
rapidjson 0.17 5913.2 2.49
simplejson 0.15 6840.8 2.15
json 0.15 6480.2 2.27

citm_catalog.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.7 1420.8 1
ujson 2.89 345.2 4.1
rapidjson 1.84 543.3 2.61
simplejson 10.06 99.4 14.29
json 3.94 254 5.59

citm_catalog.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 1.72 579.6 1
ujson 3.68 272.1 2.13
rapidjson 5.61 178.4 3.26
simplejson 5.06 198.2 2.94
json 5.09 196.9 2.95

canada.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 3.65 274.5 1
ujson 12.59 79.3 3.45
rapidjson 34.24 29.2 9.39
simplejson 57.43 17.4 15.75
json 36.03 27.6 9.88

canada.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 4.18 240.2 1
ujson 9.29 107.8 2.22
rapidjson 23.56 42.4 5.64
simplejson 21.93 45.5 5.25
json 21.34 46.9 5.11

Memory

orjson as of 3.7.0 has higher baseline memory usage than other libraries due to a persistent buffer used for parsing. Incremental memory usage when deserializing is similar to the standard library and other third-party libraries.

This measures, in the first column, RSS after importing a library and reading the fixture, and in the second column, increases in RSS after repeatedly calling loads() on the fixture.

twitter.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 21.8 2.8
ujson 14.3 4.8
rapidjson 14.9 4.6
simplejson 13.4 2.4
json 13.1 2.3

github.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 21.2 0.5
ujson 13.6 0.6
rapidjson 14.1 0.5
simplejson 12.5 0.3
json 12.4 0.3

citm_catalog.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 23 10.6
ujson 15.2 11.2
rapidjson 15.8 29.7
simplejson 14.4 24.7
json 13.9 24.7

canada.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 23.2 21.3
ujson 15.6 19.2
rapidjson 16.3 23.4
simplejson 15 21.1
json 14.3 20.9

Reproducing

The above was measured using Python 3.10.4 on Linux (amd64) with orjson 3.7.0, ujson 5.3.0, python-rapidson 1.6, and simplejson 3.17.6.

The latency results can be reproduced using the pybench and graph scripts. The memory results can be reproduced using the pymem script.

Questions

Why can't I install it from PyPI?

Probably pip needs to be upgraded to version 20.3 or later to support the latest manylinux_x_y or universal2 wheel formats.

Will it deserialize to dataclasses, UUIDs, decimals, etc or support object_hook?

No. This requires a schema specifying what types are expected and how to handle errors etc. This is addressed by data validation libraries a level above this.

Will it serialize to str?

No. bytes is the correct type for a serialized blob.

Will it support PyPy?

Probably not.

Packaging

To package orjson requires at least Rust 1.54 and the maturin build tool. It benefits from also having clang. The recommended build command is:

maturin build --no-sdist --release --strip --cargo-extra-args="--features=yyjson"

To build without use of clang, do not specify --features=yyjson. Deserialization is much faster if built with this feature.

There is a minor performance benefit on at least amd64 to building on nightly with --features=unstable-simd. It may be more significant on other architectures.

The project's own CI tests against nightly-2022-06-01 and stable 1.54. It is prudent to pin the nightly version because that channel can introduce breaking changes.

orjson is tested for amd64, aarch64, and arm7 on Linux. It is tested for amd64 on macOS and cross-compiles for aarch64. For Windows it is tested on amd64.

There are no runtime dependencies other than libc.

orjson's tests are included in the source distribution on PyPI. The requirements to run the tests are specified in test/requirements.txt. The tests should be run as part of the build. It can be run with pytest -q test.

License

orjson was written by ijl <ijl@mailbox.org>, copyright 2018 - 2022, licensed under both the Apache 2 and MIT licenses.

Project details


Release history Release notifications | RSS feed

This version

3.7.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

orjson-3.7.0.tar.gz (643.1 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

orjson-3.7.0-cp310-none-win_amd64.whl (189.5 kB view details)

Uploaded CPython 3.10Windows x86-64

orjson-3.7.0-cp310-cp310-musllinux_1_1_x86_64.whl (289.3 kB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ x86-64

orjson-3.7.0-cp310-cp310-manylinux_2_28_x86_64.whl (278.2 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ x86-64

orjson-3.7.0-cp310-cp310-manylinux_2_24_aarch64.whl (240.1 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.24+ ARM64

orjson-3.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (256.7 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

orjson-3.7.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (246.6 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARMv7l

orjson-3.7.0-cp310-cp310-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (447.0 kB view details)

Uploaded CPython 3.10macOS 10.9+ universal2 (ARM64, x86-64)macOS 10.9+ x86-64macOS 11.0+ ARM64

orjson-3.7.0-cp310-cp310-macosx_10_7_x86_64.whl (261.7 kB view details)

Uploaded CPython 3.10macOS 10.7+ x86-64

orjson-3.7.0-cp39-none-win_amd64.whl (189.5 kB view details)

Uploaded CPython 3.9Windows x86-64

orjson-3.7.0-cp39-cp39-musllinux_1_1_x86_64.whl (289.3 kB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ x86-64

orjson-3.7.0-cp39-cp39-manylinux_2_28_x86_64.whl (278.2 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.28+ x86-64

orjson-3.7.0-cp39-cp39-manylinux_2_24_aarch64.whl (240.1 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.24+ ARM64

orjson-3.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (256.7 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

orjson-3.7.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (246.6 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARMv7l

orjson-3.7.0-cp39-cp39-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (447.0 kB view details)

Uploaded CPython 3.9macOS 10.9+ universal2 (ARM64, x86-64)macOS 10.9+ x86-64macOS 11.0+ ARM64

orjson-3.7.0-cp39-cp39-macosx_10_7_x86_64.whl (261.7 kB view details)

Uploaded CPython 3.9macOS 10.7+ x86-64

orjson-3.7.0-cp38-none-win_amd64.whl (189.2 kB view details)

Uploaded CPython 3.8Windows x86-64

orjson-3.7.0-cp38-cp38-musllinux_1_1_x86_64.whl (289.1 kB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ x86-64

orjson-3.7.0-cp38-cp38-manylinux_2_28_x86_64.whl (278.1 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.28+ x86-64

orjson-3.7.0-cp38-cp38-manylinux_2_24_aarch64.whl (239.9 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.24+ ARM64

orjson-3.7.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (256.6 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

orjson-3.7.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (246.7 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARMv7l

orjson-3.7.0-cp38-cp38-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (446.9 kB view details)

Uploaded CPython 3.8macOS 10.9+ universal2 (ARM64, x86-64)macOS 10.9+ x86-64macOS 11.0+ ARM64

orjson-3.7.0-cp38-cp38-macosx_10_7_x86_64.whl (261.6 kB view details)

Uploaded CPython 3.8macOS 10.7+ x86-64

orjson-3.7.0-cp37-none-win_amd64.whl (189.2 kB view details)

Uploaded CPython 3.7Windows x86-64

orjson-3.7.0-cp37-cp37m-musllinux_1_1_x86_64.whl (289.3 kB view details)

Uploaded CPython 3.7mmusllinux: musl 1.1+ x86-64

orjson-3.7.0-cp37-cp37m-manylinux_2_28_x86_64.whl (278.2 kB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.28+ x86-64

orjson-3.7.0-cp37-cp37m-manylinux_2_24_aarch64.whl (240.0 kB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.24+ ARM64

orjson-3.7.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (256.7 kB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

orjson-3.7.0-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (246.7 kB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ ARMv7l

orjson-3.7.0-cp37-cp37m-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (446.9 kB view details)

Uploaded CPython 3.7mmacOS 10.9+ universal2 (ARM64, x86-64)macOS 10.9+ x86-64macOS 11.0+ ARM64

orjson-3.7.0-cp37-cp37m-macosx_10_7_x86_64.whl (261.6 kB view details)

Uploaded CPython 3.7mmacOS 10.7+ x86-64

File details

Details for the file orjson-3.7.0.tar.gz.

File metadata

  • Download URL: orjson-3.7.0.tar.gz
  • Upload date:
  • Size: 643.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.12.18

File hashes

Hashes for orjson-3.7.0.tar.gz
Algorithm Hash digest
SHA256 f9be0e89085d4741703b22087fa5477e232f164ef7d339fc2addd6bff499b57e
MD5 222e1839a4571866fdb1a068ed681dbc
BLAKE2b-256 6bf25af751e823e3634b86a489cb8425b8f9c5133dab667a83dd58d0219cb8da

See more details on using hashes here.

File details

Details for the file orjson-3.7.0-cp310-none-win_amd64.whl.

File metadata

  • Download URL: orjson-3.7.0-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 189.5 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.12.18

File hashes

Hashes for orjson-3.7.0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 a8c87085fd674a07b3e1a0ebbc95f52942d5eca95b87eea18c8a047d7d453ce3
MD5 d94b35dfedb6fcee967ba131d205e2c1
BLAKE2b-256 2f8967a8006c8f23d856c7fc75e415e1d33db3389208e36801f334799f3bbce4

See more details on using hashes here.

File details

Details for the file orjson-3.7.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.7.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 931597defdcd86697272cdfec532c0e4b3a1228b8f9e1017298c905b768b32fc
MD5 e643b823d0d9f47412fa26b9df54b480
BLAKE2b-256 479e40fcb73379b5bbdd01c94006f41ea3bbb14c0387dff5929f499b1f787833

See more details on using hashes here.

File details

Details for the file orjson-3.7.0-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.7.0-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 a855b4970e17053ee117bcf3d3a3e03fb6e43065cfde04cb52f56c4cb7cd9420
MD5 21795d7af13e6e6636d23633faa13912
BLAKE2b-256 249abeea88f276ceb8d9b7ca19697ba311b4710391c638ef9ae0f12fb74fd1be

See more details on using hashes here.

File details

Details for the file orjson-3.7.0-cp310-cp310-manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for orjson-3.7.0-cp310-cp310-manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 594476b69f5c85df4971896bcd38821d14a560669d1d5f619ab6b35c357a9db4
MD5 9219c6d377c47f042be9612239ffa816
BLAKE2b-256 65625b8baff3ccf96eefdae4765485a51dfff7368f31e58c5de93d803a251240

See more details on using hashes here.

File details

Details for the file orjson-3.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 270ada358f2936ffb4cab9345e97393c114da80f59ec5fc45ffdd70439665d65
MD5 472034b11225c11452bbecde0289cbb4
BLAKE2b-256 d57a28d3f76d78cfe43483fedb3244caf6692265935dbcc735a458d8e87e297b

See more details on using hashes here.

File details

Details for the file orjson-3.7.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for orjson-3.7.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 7165b65c99b7d01c66c0e18953d2eac2b9920257ee175c9039ae1dfb93449d8c
MD5 eb1117e71a328b6ea44bd5761c59bc64
BLAKE2b-256 f575e990b4f5a27e3011dbe0f0283f4425d3bd3a10d5e36ccc6c435909482624

See more details on using hashes here.

File details

Details for the file orjson-3.7.0-cp310-cp310-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for orjson-3.7.0-cp310-cp310-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 b43cbb0b2f60a2427aa5a0e437b249f0db70fc644de5f237256e266044a4f4e7
MD5 8d4be6e6d37dd08e23cf386a82a7a283
BLAKE2b-256 f441e31cb04af66fad5f24a2316bd72c29c76232c7eb2c5854e733081464ac9b

See more details on using hashes here.

File details

Details for the file orjson-3.7.0-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.7.0-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 f9170341e8b0f46e607377e9de3da725bbf9ed58e8a250e16c5ff57c76c283fd
MD5 1f5584c4995316ec4e2445fe14f5802f
BLAKE2b-256 089a4f039e07d53a900b19f60ad33d9774abab06f74d96952a34b1ce09bf203a

See more details on using hashes here.

File details

Details for the file orjson-3.7.0-cp39-none-win_amd64.whl.

File metadata

  • Download URL: orjson-3.7.0-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 189.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.12.18

File hashes

Hashes for orjson-3.7.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 e21c959aaea16e45fbc17e0e457ca73c126e376f1625ae5af3e659ce14f597ee
MD5 ca822f33f5d42ef01737b10800fccc30
BLAKE2b-256 5d95d594199754145eb95032186fbd44c3c2682e128a348f9676abe16b7d6f93

See more details on using hashes here.

File details

Details for the file orjson-3.7.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.7.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 584b840e547c54c7c1cfa10048141eb1c23d51311ab8b03eff15d4dfbb7b7231
MD5 2ab5aaadea14320feb7ac75e76be6807
BLAKE2b-256 4af002c2a5eea57b6f08c459e777998732caf7db5cc3a2407befd4bb177c61c5

See more details on using hashes here.

File details

Details for the file orjson-3.7.0-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.7.0-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 6611ca9e90f5e7230d5165b90d8d9af41648b2be00d550560b09224953874b59
MD5 d54ae71e7ab8eba3e7710591a385eb8e
BLAKE2b-256 4351b96aa9c920f89f871790c677cd0b0b82d427afdea4ddc82ad6ccf658f192

See more details on using hashes here.

File details

Details for the file orjson-3.7.0-cp39-cp39-manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for orjson-3.7.0-cp39-cp39-manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 efdd23b9ca3f4d68c88fe43e88a1ace9c793284571edb811fd5609d668a43bce
MD5 eb5e1bffdac77aff0f16f8027f9e2a67
BLAKE2b-256 72f41dd9baf654ab8f8497c630612cf6f9d6e4ce5a0f7bb2619ecc824a26fb92

See more details on using hashes here.

File details

Details for the file orjson-3.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ef20941bb3932b2ed7bd86e6a7d719db6490c80ae7ecc8976064ca02f15290d1
MD5 88e05a3f1f4aecfbbdd8bb3a34fd7c03
BLAKE2b-256 01589c0de17f2b6158bac5884758199e77eb7b1c200be821f6b412dc67872bbb

See more details on using hashes here.

File details

Details for the file orjson-3.7.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for orjson-3.7.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 146edc8951dc7cd8d69b49c67b7c9a1e888a498888d77e5e266f6bf5641fb63e
MD5 e8ad4035c358820b07839fca3434f9cc
BLAKE2b-256 1fb32b7be70f35f2d66e695530727dd86a3b352801b74fc110454a191bbf2f4e

See more details on using hashes here.

File details

Details for the file orjson-3.7.0-cp39-cp39-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for orjson-3.7.0-cp39-cp39-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 dc6be61fbf667f7df47d1d0161d9a1fcf9b27587c72a3073984e323c9fb4006d
MD5 51dceea580607c805deb0b2e119b0377
BLAKE2b-256 0b203d91823c3601763f09b54a38d5cd68f8bd461758ac1f4e7782ff8095763b

See more details on using hashes here.

File details

Details for the file orjson-3.7.0-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.7.0-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 16bf8d5134fcbdd88eb6f12dbc868c51b3eb3e84f9b2d68230546d3e58dcf885
MD5 0db088435947e3efee5fdb02d189eac3
BLAKE2b-256 3d49daefb7ad108e5bce9bef4d3e373a12ad73edb2b906c438dff165e88d470c

See more details on using hashes here.

File details

Details for the file orjson-3.7.0-cp38-none-win_amd64.whl.

File metadata

  • Download URL: orjson-3.7.0-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 189.2 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.12.18

File hashes

Hashes for orjson-3.7.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 258d6626b9c4a1da546c4d6d08a005c8f3e3b7bdf148a8c55a928bb1a3a00c65
MD5 423494fe84b3ce95f88b460ef4b6ce96
BLAKE2b-256 80e8afc22e1d7424d72911eff1fb25f90482478876dd960bb7d4454e4f2bc6aa

See more details on using hashes here.

File details

Details for the file orjson-3.7.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.7.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 148d203a3e03d2865d91e84c613754b8b6644138a4c56713a2f749f68944a593
MD5 6fc446ee1089961d8ac3a664d37fbffe
BLAKE2b-256 9962833c459e920e18ad61490752f9c556f07b1461a261398e1f337ee9b7e2e0

See more details on using hashes here.

File details

Details for the file orjson-3.7.0-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.7.0-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 a0019f6496c54ab5b55d8b5e38238828a241764d4614f686ea533251d7ef9f06
MD5 87c6498e1ebf608f85082b632a8156e6
BLAKE2b-256 96a29261026925b6d592e7e666886946724be674683adb1d08bf4d0b0d114e45

See more details on using hashes here.

File details

Details for the file orjson-3.7.0-cp38-cp38-manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for orjson-3.7.0-cp38-cp38-manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 70c1f9368fb2d4d364447be9477b5110474cc515ff28c30195cbf29876a28f2b
MD5 09fb539737e1f2e6e1258db279edab45
BLAKE2b-256 4ef1f37b4d5ff25e809bd96ade206d99e5243cdf63e14d9276f249d8640b72b6

See more details on using hashes here.

File details

Details for the file orjson-3.7.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.7.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dbacc02131d01899c3b47fc0b8de20b8c46c5c1ddd8351e4a11b0d5c75d14117
MD5 16c334a6deec80398a553b5f2fc75d41
BLAKE2b-256 b0e20c7131746aaddd54b18b2af8f152ace0a97a7975e5ce695ed890765c2523

See more details on using hashes here.

File details

Details for the file orjson-3.7.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for orjson-3.7.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 30d1882fdc263928448ef709f8ba048232f9b95f8c7818f86223416e2300bd84
MD5 9cf26324ff32724506805db9f3b8f478
BLAKE2b-256 9c67af640b4afbcbfd3a09d1c066d2f7677cf4e4da20334ca3586670c6734a86

See more details on using hashes here.

File details

Details for the file orjson-3.7.0-cp38-cp38-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for orjson-3.7.0-cp38-cp38-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 505cd2cd2afa2cba19eae047cc0632c237a7261c683a7663e56a050e41808237
MD5 0022dd65b53f659845b329a5aa645160
BLAKE2b-256 2755ead81b62c583796d491e960491166260657dfb8226c4a3159d723693a95a

See more details on using hashes here.

File details

Details for the file orjson-3.7.0-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.7.0-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 04bc4a619f23dd7dfb4c530878ba7957141ea79c46fb376684a5aca5a5c2d204
MD5 4f5b82b1cfe9f02165938d80f619a788
BLAKE2b-256 5159d8825e44ae315a56e20d29ccabb46d40b0f8d0620e52a1c2ef505d3c2b73

See more details on using hashes here.

File details

Details for the file orjson-3.7.0-cp37-none-win_amd64.whl.

File metadata

  • Download URL: orjson-3.7.0-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 189.2 kB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.12.18

File hashes

Hashes for orjson-3.7.0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 e869779e05d53fcdc0647aebd2835153857057e227e835655c3a6e6ac0424a22
MD5 8d2be1270282c9e202f45a2cb2a86d26
BLAKE2b-256 3c9a78c7e44739cca970ed8ce1031cf1e1a6b8dca2cedfc9cb9e35edf141fd03

See more details on using hashes here.

File details

Details for the file orjson-3.7.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.7.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 be5e4d9e4d66471db5fe301a41bcea55ce30757e53b8bf93fbb707ed3cb3f1a6
MD5 d21cea56b1f9a4caf81dfc7373bf6654
BLAKE2b-256 05e7bb0b47a2cde75d3ee8aa841a57bf4d7ee3b7d6edd474531d398871bbaf62

See more details on using hashes here.

File details

Details for the file orjson-3.7.0-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.7.0-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 dac1620fd1252c079db375380df2807162aa31f9d49f4deab78349fe433354b7
MD5 895cde93ddf867e12c943ec8d48e6fa4
BLAKE2b-256 a6e317a61ee5d2f5d04f5aef734a9d8c1612d3e3fe006cb4188f8271d8f795b8

See more details on using hashes here.

File details

Details for the file orjson-3.7.0-cp37-cp37m-manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for orjson-3.7.0-cp37-cp37m-manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 b30c4001500fa8df9caf4aed8711db326c98e6d80714fd9507a266788dc8cf81
MD5 0f09302f4bacc1f8d57c1641be30d482
BLAKE2b-256 770a1c8f047dff32b6cf4173e186bf7655d853202fed0f6884ce875e4cf1e0a4

See more details on using hashes here.

File details

Details for the file orjson-3.7.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.7.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 984e84974b581f279b00800902505a5b8cff93a12887cad399d70be9e96edf2e
MD5 d490c8d02a186774fc6850dcc32c090c
BLAKE2b-256 a5b30a5ece686dfe5d398803242ffbcc3ad62d6c6a8b07a7343e0a010b5f4704

See more details on using hashes here.

File details

Details for the file orjson-3.7.0-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for orjson-3.7.0-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 c8fcb17c2902ff70d67d07d4e19c5ecd6b5d841fe6e9b8584bd0c4844261d305
MD5 1dd8dfc9e7f9ea8f7c1f3e2f91636e47
BLAKE2b-256 c5817827f59873da8ae4a909ed36d892e7a668d37da25af1966e7693e8c0ce21

See more details on using hashes here.

File details

Details for the file orjson-3.7.0-cp37-cp37m-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for orjson-3.7.0-cp37-cp37m-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 1660e2f3ba091c760256dc3f8e6757c7b7e2ce274e2f0e6bbcbd9505f021a620
MD5 c47a92de8d7ad894af5108bfe8062fe0
BLAKE2b-256 d80d3f53505eca8e5636483d556ce15385f5d3822f0b494e387d1e2beba9fd36

See more details on using hashes here.

File details

Details for the file orjson-3.7.0-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.7.0-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 feca19c7b1b84ace15ac25202359fb0e642c196fde347766fcd251e90c15fc27
MD5 81ea44a8c9c5bc07ff6dddeac4b9ec5c
BLAKE2b-256 6f5c383fc5d71c07de0a0b99f65053b775cc0c122fe05096dbde2031d7f66376

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page