Skip to main content

Fast, correct Python JSON library supporting dataclasses, datetimes, and numpy

Project description

orjson

orjson is a fast, correct JSON library for Python. It benchmarks as the fastest Python library for JSON and is more correct than the standard json library or other third-party libraries. It serializes dataclass, datetime, numpy, and UUID instances natively.

Its features and drawbacks compared to other Python JSON libraries:

  • serializes dataclass instances 40-50x as fast as other libraries
  • serializes datetime, date, and time instances to RFC 3339 format, e.g., "1970-01-01T00:00:00+00:00"
  • serializes numpy.ndarray instances 4-12x as fast with 0.3x the memory usage of other libraries
  • pretty prints 10x to 20x as fast as the standard library
  • serializes to bytes rather than str, i.e., is not a drop-in replacement
  • serializes str without escaping unicode to ASCII, e.g., "好" rather than "\\u597d"
  • serializes float 10x as fast and deserializes twice as fast as other libraries
  • serializes subclasses of str, int, list, and dict natively, requiring default to specify how to serialize others
  • serializes arbitrary types using a default hook
  • has strict UTF-8 conformance, more correct than the standard library
  • has strict JSON conformance in not supporting Nan/Infinity/-Infinity
  • has an option for strict JSON conformance on 53-bit integers with default support for 64-bit
  • does not provide load() or dump() functions for reading from/writing to file-like objects

orjson supports CPython 3.6, 3.7, 3.8, 3.9, and 3.10. It distributes x86_64/amd64 and aarch64/armv8 wheels for Linux and macOS. It distributes x86_64/amd64 wheels for Windows. orjson does not support PyPy. Releases follow semantic versioning and serializing a new object type without an opt-in flag is considered a breaking change.

orjson is licensed under both the Apache 2.0 and MIT licenses. The repository and issue tracker is github.com/ijl/orjson, and patches may be submitted there. There is a CHANGELOG available in the repository.

  1. Usage
    1. Install
    2. Quickstart
    3. Migrating
    4. Serialize
      1. default
      2. option
    5. Deserialize
  2. Types
    1. dataclass
    2. datetime
    3. enum
    4. float
    5. int
    6. numpy
    7. str
    8. uuid
  3. Testing
  4. Performance
    1. Latency
    2. Memory
    3. Reproducing
  5. Questions
  6. Packaging
  7. License

Usage

Install

To install a wheel from PyPI:

pip install --upgrade "pip>=19.3" # manylinux2014 support
pip install --upgrade orjson

Notice that Linux environments with a pip version shipped in 2018 or earlier must first upgrade pip to support manylinux2014 wheels.

To build a wheel, see packaging.

Quickstart

This is an example of serializing, with options specified, and deserializing:

>>> import orjson, datetime, numpy
>>> data = {
    "type": "job",
    "created_at": datetime.datetime(1970, 1, 1),
    "status": "🆗",
    "payload": numpy.array([[1, 2], [3, 4]]),
}
>>> orjson.dumps(data, option=orjson.OPT_NAIVE_UTC | orjson.OPT_SERIALIZE_NUMPY)
b'{"type":"job","created_at":"1970-01-01T00:00:00+00:00","status":"\xf0\x9f\x86\x97","payload":[[1,2],[3,4]]}'
>>> orjson.loads(_)
{'type': 'job', 'created_at': '1970-01-01T00:00:00+00:00', 'status': '🆗', 'payload': [[1, 2], [3, 4]]}

Migrating

orjson version 3 serializes more types than version 2. Subclasses of str, int, dict, and list are now serialized. This is faster and more similar to the standard library. It can be disabled with orjson.OPT_PASSTHROUGH_SUBCLASS.dataclasses.dataclass instances are now serialized by default and cannot be customized in a default function unless option=orjson.OPT_PASSTHROUGH_DATACLASS is specified. uuid.UUID instances are serialized by default. For any type that is now serialized, implementations in a default function and options enabling them can be removed but do not need to be. There was no change in deserialization.

To migrate from the standard library, the largest difference is that orjson.dumps returns bytes and json.dumps returns a str. Users with dict objects using non-str keys should specify option=orjson.OPT_NON_STR_KEYS. sort_keys is replaced by option=orjson.OPT_SORT_KEYS. indent is replaced by option=orjson.OPT_INDENT_2 and other levels of indentation are not supported.

Serialize

def dumps(
    __obj: Any,
    default: Optional[Callable[[Any], Any]] = ...,
    option: Optional[int] = ...,
) -> bytes: ...

dumps() serializes Python objects to JSON.

It natively serializes str, dict, list, tuple, int, float, bool, dataclasses.dataclass, typing.TypedDict, datetime.datetime, datetime.date, datetime.time, uuid.UUID, numpy.ndarray, and None instances. It supports arbitrary types through default. It serializes subclasses of str, int, dict, list, dataclasses.dataclass, and enum.Enum. It does not serialize subclasses of tuple to avoid serializing namedtuple objects as arrays. To avoid serializing subclasses, specify the option orjson.OPT_PASSTHROUGH_SUBCLASS.

The output is a bytes object containing UTF-8.

The global interpreter lock (GIL) is held for the duration of the call.

It raises JSONEncodeError on an unsupported type. This exception message describes the invalid object with the error message Type is not JSON serializable: .... To fix this, specify default.

It raises JSONEncodeError on a str that contains invalid UTF-8.

It raises JSONEncodeError on an integer that exceeds 64 bits by default or, with OPT_STRICT_INTEGER, 53 bits.

It raises JSONEncodeError if a dict has a key of a type other than str, unless OPT_NON_STR_KEYS is specified.

It raises JSONEncodeError if the output of default recurses to handling by default more than 254 levels deep.

It raises JSONEncodeError on circular references.

It raises JSONEncodeError if a tzinfo on a datetime object is unsupported.

JSONEncodeError is a subclass of TypeError. This is for compatibility with the standard library.

default

To serialize a subclass or arbitrary types, specify default as a callable that returns a supported type. default may be a function, lambda, or callable class instance. To specify that a type was not handled by default, raise an exception such as TypeError.

>>> import orjson, decimal
>>>
def default(obj):
    if isinstance(obj, decimal.Decimal):
        return str(obj)
    raise TypeError

>>> orjson.dumps(decimal.Decimal("0.0842389659712649442845"))
JSONEncodeError: Type is not JSON serializable: decimal.Decimal
>>> orjson.dumps(decimal.Decimal("0.0842389659712649442845"), default=default)
b'"0.0842389659712649442845"'
>>> orjson.dumps({1, 2}, default=default)
orjson.JSONEncodeError: Type is not JSON serializable: set

The default callable may return an object that itself must be handled by default up to 254 times before an exception is raised.

It is important that default raise an exception if a type cannot be handled. Python otherwise implicitly returns None, which appears to the caller like a legitimate value and is serialized:

>>> import orjson, json, rapidjson
>>>
def default(obj):
    if isinstance(obj, decimal.Decimal):
        return str(obj)

>>> orjson.dumps({"set":{1, 2}}, default=default)
b'{"set":null}'
>>> json.dumps({"set":{1, 2}}, default=default)
'{"set":null}'
>>> rapidjson.dumps({"set":{1, 2}}, default=default)
'{"set":null}'

option

To modify how data is serialized, specify option. Each option is an integer constant in orjson. To specify multiple options, mask them together, e.g., option=orjson.OPT_STRICT_INTEGER | orjson.OPT_NAIVE_UTC.

OPT_APPEND_NEWLINE

Append \n to the output. This is a convenience and optimization for the pattern of dumps(...) + "\n". bytes objects are immutable and this pattern copies the original contents.

>>> import orjson
>>> orjson.dumps([])
b"[]"
>>> orjson.dumps([], option=orjson.OPT_APPEND_NEWLINE)
b"[]\n"
OPT_INDENT_2

Pretty-print output with an indent of two spaces. This is equivalent to indent=2 in the standard library. Pretty printing is slower and the output larger. orjson is the fastest compared library at pretty printing and has much less of a slowdown to pretty print than the standard library does. This option is compatible with all other options.

>>> import orjson
>>> orjson.dumps({"a": "b", "c": {"d": True}, "e": [1, 2]})
b'{"a":"b","c":{"d":true},"e":[1,2]}'
>>> orjson.dumps(
    {"a": "b", "c": {"d": True}, "e": [1, 2]},
    option=orjson.OPT_INDENT_2
)
b'{\n  "a": "b",\n  "c": {\n    "d": true\n  },\n  "e": [\n    1,\n    2\n  ]\n}'

If displayed, the indentation and linebreaks appear like this:

{
  "a": "b",
  "c": {
    "d": true
  },
  "e": [
    1,
    2
  ]
}

This measures serializing the github.json fixture as compact (52KiB) or pretty (64KiB):

Library compact (ms) pretty (ms) vs. orjson
orjson 0.06 0.07 1.0
ujson 0.18 0.19 2.8
rapidjson 0.22
simplejson 0.35 1.49 21.4
json 0.36 1.19 17.2

This measures serializing the citm_catalog.json fixture, more of a worst case due to the amount of nesting and newlines, as compact (489KiB) or pretty (1.1MiB):

Library compact (ms) pretty (ms) vs. orjson
orjson 0.88 1.73 1.0
ujson 3.73 4.52 2.6
rapidjson 3.54
simplejson 11.77 72.06 41.6
json 6.71 55.22 31.9

rapidjson is blank because it does not support pretty printing. This can be reproduced using the pyindent script.

OPT_NAIVE_UTC

Serialize datetime.datetime objects without a tzinfo as UTC. This has no effect on datetime.datetime objects that have tzinfo set.

>>> import orjson, datetime
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0),
    )
b'"1970-01-01T00:00:00"'
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0),
        option=orjson.OPT_NAIVE_UTC,
    )
b'"1970-01-01T00:00:00+00:00"'
OPT_NON_STR_KEYS

Serialize dict keys of type other than str. This allows dict keys to be one of str, int, float, bool, None, datetime.datetime, datetime.date, datetime.time, enum.Enum, and uuid.UUID. For comparison, the standard library serializes str, int, float, bool or None by default. orjson benchmarks as being faster at serializing non-str keys than other libraries. This option is slower for str keys than the default.

>>> import orjson, datetime, uuid
>>> orjson.dumps(
        {uuid.UUID("7202d115-7ff3-4c81-a7c1-2a1f067b1ece"): [1, 2, 3]},
        option=orjson.OPT_NON_STR_KEYS,
    )
b'{"7202d115-7ff3-4c81-a7c1-2a1f067b1ece":[1,2,3]}'
>>> orjson.dumps(
        {datetime.datetime(1970, 1, 1, 0, 0, 0): [1, 2, 3]},
        option=orjson.OPT_NON_STR_KEYS | orjson.OPT_NAIVE_UTC,
    )
b'{"1970-01-01T00:00:00+00:00":[1,2,3]}'

These types are generally serialized how they would be as values, e.g., datetime.datetime is still an RFC 3339 string and respects options affecting it. The exception is that int serialization does not respect OPT_STRICT_INTEGER.

This option has the risk of creating duplicate keys. This is because non-str objects may serialize to the same str as an existing key, e.g., {"1": true, 1: false}. The last key to be inserted to the dict will be serialized last and a JSON deserializer will presumably take the last occurrence of a key (in the above, false). The first value will be lost.

This option is compatible with orjson.OPT_SORT_KEYS. If sorting is used, note the sort is unstable and will be unpredictable for duplicate keys.

>>> import orjson, datetime
>>> orjson.dumps(
    {"other": 1, datetime.date(1970, 1, 5): 2, datetime.date(1970, 1, 3): 3},
    option=orjson.OPT_NON_STR_KEYS | orjson.OPT_SORT_KEYS
)
b'{"1970-01-03":3,"1970-01-05":2,"other":1}'

This measures serializing 589KiB of JSON comprising a list of 100 dict in which each dict has both 365 randomly-sorted int keys representing epoch timestamps as well as one str key and the value for each key is a single integer. In "str keys", the keys were converted to str before serialization, and orjson still specifes option=orjson.OPT_NON_STR_KEYS (which is always somewhat slower).

Library str keys (ms) int keys (ms) int keys sorted (ms)
orjson 1.53 2.16 4.29
ujson 3.07 5.65
rapidjson 4.29
simplejson 11.24 14.50 21.86
json 7.17 8.49

ujson is blank for sorting because it segfaults. json is blank because it raises TypeError on attempting to sort before converting all keys to str. rapidjson is blank because it does not support non-str keys. This can be reproduced using the pynonstr script.

OPT_OMIT_MICROSECONDS

Do not serialize the microsecond field on datetime.datetime and datetime.time instances.

>>> import orjson, datetime
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0, 1),
    )
b'"1970-01-01T00:00:00.000001"'
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0, 1),
        option=orjson.OPT_OMIT_MICROSECONDS,
    )
b'"1970-01-01T00:00:00"'
OPT_PASSTHROUGH_DATACLASS

Passthrough dataclasses.dataclass instances to default. This allows customizing their output but is much slower.

>>> import orjson, dataclasses
>>>
@dataclasses.dataclass
class User:
    id: str
    name: str
    password: str

def default(obj):
    if isinstance(obj, User):
        return {"id": obj.id, "name": obj.name}
    raise TypeError

>>> orjson.dumps(User("3b1", "asd", "zxc"))
b'{"id":"3b1","name":"asd","password":"zxc"}'
>>> orjson.dumps(User("3b1", "asd", "zxc"), option=orjson.OPT_PASSTHROUGH_DATACLASS)
TypeError: Type is not JSON serializable: User
>>> orjson.dumps(
        User("3b1", "asd", "zxc"),
        option=orjson.OPT_PASSTHROUGH_DATACLASS,
        default=default,
    )
b'{"id":"3b1","name":"asd"}'
OPT_PASSTHROUGH_DATETIME

Passthrough datetime.datetime, datetime.date, and datetime.time instances to default. This allows serializing datetimes to a custom format, e.g., HTTP dates:

>>> import orjson, datetime
>>>
def default(obj):
    if isinstance(obj, datetime.datetime):
        return obj.strftime("%a, %d %b %Y %H:%M:%S GMT")
    raise TypeError

>>> orjson.dumps({"created_at": datetime.datetime(1970, 1, 1)})
b'{"created_at":"1970-01-01T00:00:00"}'
>>> orjson.dumps({"created_at": datetime.datetime(1970, 1, 1)}, option=orjson.OPT_PASSTHROUGH_DATETIME)
TypeError: Type is not JSON serializable: datetime.datetime
>>> orjson.dumps(
        {"created_at": datetime.datetime(1970, 1, 1)},
        option=orjson.OPT_PASSTHROUGH_DATETIME,
        default=default,
    )
b'{"created_at":"Thu, 01 Jan 1970 00:00:00 GMT"}'

This does not affect datetimes in dict keys if using OPT_NON_STR_KEYS.

OPT_PASSTHROUGH_SUBCLASS

Passthrough subclasses of builtin types to default.

>>> import orjson
>>>
class Secret(str):
    pass

def default(obj):
    if isinstance(obj, Secret):
        return "******"
    raise TypeError

>>> orjson.dumps(Secret("zxc"))
b'"zxc"'
>>> orjson.dumps(Secret("zxc"), option=orjson.OPT_PASSTHROUGH_SUBCLASS)
TypeError: Type is not JSON serializable: Secret
>>> orjson.dumps(Secret("zxc"), option=orjson.OPT_PASSTHROUGH_SUBCLASS, default=default)
b'"******"'

This does not affect serializing subclasses as dict keys if using OPT_NON_STR_KEYS.

OPT_SERIALIZE_DATACLASS

This is deprecated and has no effect in version 3. In version 2 this was required to serialize dataclasses.dataclass instances. For more, see dataclass.

OPT_SERIALIZE_NUMPY

Serialize numpy.ndarray instances. For more, see numpy.

OPT_SERIALIZE_UUID

This is deprecated and has no effect in version 3. In version 2 this was required to serialize uuid.UUID instances. For more, see UUID.

OPT_SORT_KEYS

Serialize dict keys in sorted order. The default is to serialize in an unspecified order. This is equivalent to sort_keys=True in the standard library.

This can be used to ensure the order is deterministic for hashing or tests. It has a substantial performance penalty and is not recommended in general.

>>> import orjson
>>> orjson.dumps({"b": 1, "c": 2, "a": 3})
b'{"b":1,"c":2,"a":3}'
>>> orjson.dumps({"b": 1, "c": 2, "a": 3}, option=orjson.OPT_SORT_KEYS)
b'{"a":3,"b":1,"c":2}'

This measures serializing the twitter.json fixture unsorted and sorted:

Library unsorted (ms) sorted (ms) vs. orjson
orjson 0.5 0.92 1
ujson 1.61 2.48 2.7
rapidjson 2.17 2.89 3.2
simplejson 3.56 5.13 5.6
json 3.59 4.59 5

The benchmark can be reproduced using the pysort script.

The sorting is not collation/locale-aware:

>>> import orjson
>>> orjson.dumps({"a": 1, "ä": 2, "A": 3}, option=orjson.OPT_SORT_KEYS)
b'{"A":3,"a":1,"\xc3\xa4":2}'

This is the same sorting behavior as the standard library, rapidjson, simplejson, and ujson.

dataclass also serialize as maps but this has no effect on them.

OPT_STRICT_INTEGER

Enforce 53-bit limit on integers. The limit is otherwise 64 bits, the same as the Python standard library. For more, see int.

OPT_UTC_Z

Serialize a UTC timezone on datetime.datetime instances as Z instead of +00:00.

>>> import orjson, datetime
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=datetime.timezone.utc),
    )
b'"1970-01-01T00:00:00+00:00"'
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=datetime.timezone.utc),
        option=orjson.OPT_UTC_Z
    )
b'"1970-01-01T00:00:00Z"'

Deserialize

def loads(__obj: Union[bytes, bytearray, memoryview, str]) -> Any: ...

loads() deserializes JSON to Python objects. It deserializes to dict, list, int, float, str, bool, and None objects.

bytes, bytearray, memoryview, and str input are accepted. If the input exists as a memoryview, bytearray, or bytes object, it is recommended to pass these directly rather than creating an unnecessary str object. This has lower memory usage and lower latency.

The input must be valid UTF-8.

orjson maintains a cache of map keys for the duration of the process. This causes a net reduction in memory usage by avoiding duplicate strings. The keys must be at most 64 bytes to be cached and 512 entries are stored.

The global interpreter lock (GIL) is held for the duration of the call.

It raises JSONDecodeError if given an invalid type or invalid JSON. This includes if the input contains NaN, Infinity, or -Infinity, which the standard library allows, but is not valid JSON.

JSONDecodeError is a subclass of json.JSONDecodeError and ValueError. This is for compatibility with the standard library.

Types

dataclass

orjson serializes instances of dataclasses.dataclass natively. It serializes instances 40-50x as fast as other libraries and avoids a severe slowdown seen in other libraries compared to serializing dict.

It is supported to pass all variants of dataclasses, including dataclasses using __slots__, frozen dataclasses, those with optional or default attributes, and subclasses. There is a performance benefit to not using __slots__.

Library dict (ms) dataclass (ms) vs. orjson
orjson 1.40 1.60 1
ujson
rapidjson 3.64 68.48 42
simplejson 14.21 92.18 57
json 13.28 94.90 59

This measures serializing 555KiB of JSON, orjson natively and other libraries using default to serialize the output of dataclasses.asdict(). This can be reproduced using the pydataclass script.

Dataclasses are serialized as maps, with every attribute serialized and in the order given on class definition:

>>> import dataclasses, orjson, typing

@dataclasses.dataclass
class Member:
    id: int
    active: bool = dataclasses.field(default=False)

@dataclasses.dataclass
class Object:
    id: int
    name: str
    members: typing.List[Member]

>>> orjson.dumps(Object(1, "a", [Member(1, True), Member(2)]))
b'{"id":1,"name":"a","members":[{"id":1,"active":true},{"id":2,"active":false}]}'

Users may wish to control how dataclass instances are serialized, e.g., to not serialize an attribute or to change the name of an attribute when serialized. orjson may implement support using the metadata mapping on field attributes, e.g., field(metadata={"json_serialize": False}), if use cases are clear.

datetime

orjson serializes datetime.datetime objects to RFC 3339 format, e.g., "1970-01-01T00:00:00+00:00". This is a subset of ISO 8601 and compatible with isoformat() in the standard library.

>>> import orjson, datetime, zoneinfo
>>> orjson.dumps(
    datetime.datetime(2018, 12, 1, 2, 3, 4, 9, tzinfo=zoneinfo.ZoneInfo('Australia/Adelaide'))
)
b'"2018-12-01T02:03:04.000009+10:30"'
>>> orjson.dumps(
    datetime.datetime.fromtimestamp(4123518902).replace(tzinfo=datetime.timezone.utc)
)
b'"2100-09-01T21:55:02+00:00"'
>>> orjson.dumps(
    datetime.datetime.fromtimestamp(4123518902)
)
b'"2100-09-01T21:55:02"'

datetime.datetime supports instances with a tzinfo that is None, datetime.timezone.utc, a timezone instance from the python3.9+ zoneinfo module, or a timezone instance from the third-party pendulum, pytz, or dateutil/arrow libraries.

datetime.time objects must not have a tzinfo.

>>> import orjson, datetime
>>> orjson.dumps(datetime.time(12, 0, 15, 290))
b'"12:00:15.000290"'

datetime.date objects will always serialize.

>>> import orjson, datetime
>>> orjson.dumps(datetime.date(1900, 1, 2))
b'"1900-01-02"'

Errors with tzinfo result in JSONEncodeError being raised.

It is faster to have orjson serialize datetime objects than to do so before calling dumps(). If using an unsupported type such as pendulum.datetime, use default.

To disable serialization of datetime objects specify the option orjson.OPT_PASSTHROUGH_DATETIME.

To use "Z" suffix instead of "+00:00" to indicate UTC ("Zulu") time, use the option orjson.OPT_UTC_Z.

To assume datetimes without timezone are UTC, se the option orjson.OPT_NAIVE_UTC.

enum

orjson serializes enums natively. Options apply to their values.

>>> import enum, datetime, orjson
>>>
class DatetimeEnum(enum.Enum):
    EPOCH = datetime.datetime(1970, 1, 1, 0, 0, 0)
>>> orjson.dumps(DatetimeEnum.EPOCH)
b'"1970-01-01T00:00:00"'
>>> orjson.dumps(DatetimeEnum.EPOCH, option=orjson.OPT_NAIVE_UTC)
b'"1970-01-01T00:00:00+00:00"'

Enums with members that are not supported types can be serialized using default:

>>> import enum, orjson
>>>
class Custom:
    def __init__(self, val):
        self.val = val

def default(obj):
    if isinstance(obj, Custom):
        return obj.val
    raise TypeError

class CustomEnum(enum.Enum):
    ONE = Custom(1)

>>> orjson.dumps(CustomEnum.ONE, default=default)
b'1'

float

orjson serializes and deserializes double precision floats with no loss of precision and consistent rounding. The same behavior is observed in rapidjson, simplejson, and json. ujson 1.35 was inaccurate in both serialization and deserialization, i.e., it modifies the data, and the recent 2.0 release is accurate.

orjson.dumps() serializes Nan, Infinity, and -Infinity, which are not compliant JSON, as null:

>>> import orjson, ujson, rapidjson, json
>>> orjson.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
b'[null,null,null]'
>>> ujson.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
OverflowError: Invalid Inf value when encoding double
>>> rapidjson.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
'[NaN,Infinity,-Infinity]'
>>> json.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
'[NaN, Infinity, -Infinity]'

int

orjson serializes and deserializes 64-bit integers by default. The range supported is a signed 64-bit integer's minimum (-9223372036854775807) to an unsigned 64-bit integer's maximum (18446744073709551615). This is widely compatible, but there are implementations that only support 53-bits for integers, e.g., web browsers. For those implementations, dumps() can be configured to raise a JSONEncodeError on values exceeding the 53-bit range.

>>> import orjson
>>> orjson.dumps(9007199254740992)
b'9007199254740992'
>>> orjson.dumps(9007199254740992, option=orjson.OPT_STRICT_INTEGER)
JSONEncodeError: Integer exceeds 53-bit range
>>> orjson.dumps(-9007199254740992, option=orjson.OPT_STRICT_INTEGER)
JSONEncodeError: Integer exceeds 53-bit range

numpy

orjson natively serializes numpy.ndarray and individual numpy.float64, numpy.float32, numpy.int64, numpy.int32, numpy.int8, numpy.uint64, numpy.uint32, and numpy.uint8 instances. Arrays may have a dtype of numpy.bool, numpy.float32, numpy.float64, numpy.int32, numpy.int64, numpy.uint32, numpy.uint64, numpy.uintp, or numpy.intp. orjson is faster than all compared libraries at serializing numpy instances. Serializing numpy data requires specifying option=orjson.OPT_SERIALIZE_NUMPY.

>>> import orjson, numpy
>>> orjson.dumps(
        numpy.array([[1, 2, 3], [4, 5, 6]]),
        option=orjson.OPT_SERIALIZE_NUMPY,
)
b'[[1,2,3],[4,5,6]]'

The array must be a contiguous C array (C_CONTIGUOUS) and one of the supported datatypes.

If an array is not a contiguous C array or contains an supported datatype, orjson falls through to default. In default, obj.tolist() can be specified. If an array is malformed, which is not expected, orjson.JSONEncodeError is raised.

This measures serializing 92MiB of JSON from an numpy.ndarray with dimensions of (50000, 100) and numpy.float64 values:

Library Latency (ms) RSS diff (MiB) vs. orjson
orjson 194 99 1.0
ujson
rapidjson 3,048 309 15.7
simplejson 3,023 297 15.6
json 3,133 297 16.1

This measures serializing 100MiB of JSON from an numpy.ndarray with dimensions of (100000, 100) and numpy.int32 values:

Library Latency (ms) RSS diff (MiB) vs. orjson
orjson 178 115 1.0
ujson
rapidjson 1,512 551 8.5
simplejson 1,606 504 9.0
json 1,506 503 8.4

This measures serializing 105MiB of JSON from an numpy.ndarray with dimensions of (100000, 200) and numpy.bool values:

Library Latency (ms) RSS diff (MiB) vs. orjson
orjson 157 120 1.0
ujson
rapidjson 710 327 4.5
simplejson 931 398 5.9
json 996 400 6.3

In these benchmarks, orjson serializes natively, ujson is blank because it does not support a default parameter, and the other libraries serialize ndarray.tolist() via default. The RSS column measures peak memory usage during serialization. This can be reproduced using the pynumpy script.

orjson does not have an installation or compilation dependency on numpy. The implementation is independent, reading numpy.ndarray using PyArrayInterface.

str

orjson is strict about UTF-8 conformance. This is stricter than the standard library's json module, which will serialize and deserialize UTF-16 surrogates, e.g., "\ud800", that are invalid UTF-8.

If orjson.dumps() is given a str that does not contain valid UTF-8, orjson.JSONEncodeError is raised. If loads() receives invalid UTF-8, orjson.JSONDecodeError is raised.

orjson and rapidjson are the only compared JSON libraries to consistently error on bad input.

>>> import orjson, ujson, rapidjson, json
>>> orjson.dumps('\ud800')
JSONEncodeError: str is not valid UTF-8: surrogates not allowed
>>> ujson.dumps('\ud800')
UnicodeEncodeError: 'utf-8' codec ...
>>> rapidjson.dumps('\ud800')
UnicodeEncodeError: 'utf-8' codec ...
>>> json.dumps('\ud800')
'"\\ud800"'
>>> orjson.loads('"\\ud800"')
JSONDecodeError: unexpected end of hex escape at line 1 column 8: line 1 column 1 (char 0)
>>> ujson.loads('"\\ud800"')
''
>>> rapidjson.loads('"\\ud800"')
ValueError: Parse error at offset 1: The surrogate pair in string is invalid.
>>> json.loads('"\\ud800"')
'\ud800'

To make a best effort at deserializing bad input, first decode bytes using the replace or lossy argument for errors:

>>> import orjson
>>> orjson.loads(b'"\xed\xa0\x80"')
JSONDecodeError: str is not valid UTF-8: surrogates not allowed
>>> orjson.loads(b'"\xed\xa0\x80"'.decode("utf-8", "replace"))
'���'

uuid

orjson serializes uuid.UUID instances to RFC 4122 format, e.g., "f81d4fae-7dec-11d0-a765-00a0c91e6bf6".

>>> import orjson, uuid
>>> orjson.dumps(uuid.UUID('f81d4fae-7dec-11d0-a765-00a0c91e6bf6'))
b'"f81d4fae-7dec-11d0-a765-00a0c91e6bf6"'
>>> orjson.dumps(uuid.uuid5(uuid.NAMESPACE_DNS, "python.org"))
b'"886313e1-3b8a-5372-9b90-0c9aee199e5d"'

Testing

The library has comprehensive tests. There are tests against fixtures in the JSONTestSuite and nativejson-benchmark repositories. It is tested to not crash against the Big List of Naughty Strings. It is tested to not leak memory. It is tested to not crash against and not accept invalid UTF-8. There are integration tests exercising the library's use in web servers (gunicorn using multiprocess/forked workers) and when multithreaded. It also uses some tests from the ultrajson library.

orjson is the most correct of the compared libraries. This graph shows how each library handles a combined 342 JSON fixtures from the JSONTestSuite and nativejson-benchmark tests:

Library Invalid JSON documents not rejected Valid JSON documents not deserialized
orjson 0 0
ujson 38 0
rapidjson 6 0
simplejson 13 0
json 17 0

This shows that all libraries deserialize valid JSON but only orjson correctly rejects the given invalid JSON fixtures. Errors are largely due to accepting invalid strings and numbers.

The graph above can be reproduced using the pycorrectness script.

Performance

Serialization and deserialization performance of orjson is better than ultrajson, rapidjson, simplejson, or json. The benchmarks are done on fixtures of real data:

  • twitter.json, 631.5KiB, results of a search on Twitter for "一", containing CJK strings, dictionaries of strings and arrays of dictionaries, indented.

  • github.json, 55.8KiB, a GitHub activity feed, containing dictionaries of strings and arrays of dictionaries, not indented.

  • citm_catalog.json, 1.7MiB, concert data, containing nested dictionaries of strings and arrays of integers, indented.

  • canada.json, 2.2MiB, coordinates of the Canadian border in GeoJSON format, containing floats and arrays, indented.

Latency

alt text alt text alt text alt text alt text alt text alt text alt text

twitter.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.59 1698.8 1
ujson 2.14 464.3 3.64
rapidjson 2.39 418.5 4.06
simplejson 3.15 316.9 5.36
json 3.56 281.2 6.06

twitter.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 2.28 439.3 1
ujson 2.89 345.9 1.27
rapidjson 3.85 259.6 1.69
simplejson 3.66 272.1 1.61
json 4.05 246.7 1.78

github.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.07 15265.2 1
ujson 0.22 4556.7 3.35
rapidjson 0.26 3808.9 4.02
simplejson 0.37 2690.4 5.68
json 0.35 2847.8 5.36

github.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.18 5610.1 1
ujson 0.28 3540.7 1.58
rapidjson 0.33 3031.5 1.85
simplejson 0.29 3385.6 1.65
json 0.29 3402.1 1.65

citm_catalog.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.99 1008.5 1
ujson 3.69 270.7 3.72
rapidjson 3.55 281.4 3.58
simplejson 11.76 85.1 11.85
json 6.89 145.1 6.95

citm_catalog.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 4.53 220.5 1
ujson 5.67 176.5 1.25
rapidjson 7.51 133.3 1.66
simplejson 7.54 132.7 1.66
json 7.8 128.2 1.72

canada.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 4.72 198.9 1
ujson 17.76 56.3 3.77
rapidjson 61.83 16.2 13.11
simplejson 80.6 12.4 17.09
json 52.38 18.8 11.11

canada.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 10.28 97.4 1
ujson 16.49 60.5 1.6
rapidjson 37.92 26.4 3.69
simplejson 37.7 26.5 3.67
json 37.87 27.6 3.68

Memory

orjson's memory usage when deserializing is similar to or lower than the standard library and other third-party libraries.

This measures, in the first column, RSS after importing a library and reading the fixture, and in the second column, increases in RSS after repeatedly calling loads() on the fixture.

twitter.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 13.5 2.5
ujson 14 4.1
rapidjson 14.7 6.5
simplejson 13.2 2.5
json 12.9 2.3

github.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 13.1 0.3
ujson 13.5 0.3
rapidjson 14 0.7
simplejson 12.6 0.3
json 12.3 0.1

citm_catalog.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 14.6 7.9
ujson 15.1 11.1
rapidjson 15.8 36
simplejson 14.3 27.4
json 14 27.2

canada.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 17.1 15.7
ujson 17.6 17.4
rapidjson 18.3 17.9
simplejson 16.9 19.6
json 16.5 19.4

Reproducing

The above was measured using Python 3.8.3 on Linux (x86_64) with orjson 3.3.0, ujson 3.0.0, python-rapidson 0.9.1, and simplejson 3.17.2.

The latency results can be reproduced using the pybench and graph scripts. The memory results can be reproduced using the pymem script.

Questions

Why can't I install it from PyPI?

Probably pip needs to be upgraded. pip added support for manylinux2014 in 2019.

Will it deserialize to dataclasses, UUIDs, decimals, etc or support object_hook?

No. This requires a schema specifying what types are expected and how to handle errors etc. This is addressed by data validation libraries a level above this.

Will it serialize to str?

No. bytes is the correct type for a serialized blob.

Will it support PyPy?

If someone implements it well.

Packaging

To package orjson requires Rust on the nightly channel and the maturin build tool. maturin can be installed from PyPI or packaged as well. This is the simplest and recommended way of installing from source, assuming rustup is available from a package manager:

rustup default nightly
pip wheel --no-binary=orjson orjson

This is an example of building a wheel using the repository as source, rustup installed from upstream, and a pinned version of Rust:

pip install maturin
curl https://sh.rustup.rs -sSf | sh -s -- --default-toolchain nightly-2021-06-24 --profile minimal -y
maturin build --no-sdist --release --strip --manylinux off
ls -1 target/wheels

Problems with the Rust nightly channel may require pinning a version. nightly-2021-06-24 is known to be ok.

orjson is tested for amd64 and aarch64 on Linux, macOS, and Windows. It may not work on 32-bit targets. It has recommended RUSTFLAGS specified in .cargo/config so it is recommended to either not set RUSTFLAGS or include these options.

There are no runtime dependencies other than libc.

orjson's tests are included in the source distribution on PyPI. It is necessarily to install dependencies from PyPI specified in test/requirements.txt. These require a C compiler. The tests do not make network requests.

The tests should be run as part of the build. It can be run like this:

pip install -r test/requirements.txt
pytest -q test

License

orjson was written by ijl <ijl@mailbox.org>, copyright 2018 - 2021, licensed under both the Apache 2 and MIT licenses.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

orjson-3.5.4.tar.gz (742.5 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

orjson-3.5.4-cp310-cp310-manylinux_2_24_x86_64.whl (229.7 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.24+ x86-64

orjson-3.5.4-cp310-cp310-manylinux_2_24_aarch64.whl (211.5 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.24+ ARM64

orjson-3.5.4-cp39-none-win_amd64.whl (180.7 kB view details)

Uploaded CPython 3.9Windows x86-64

orjson-3.5.4-cp39-cp39-manylinux_2_24_x86_64.whl (229.7 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.24+ x86-64

orjson-3.5.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (229.8 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

orjson-3.5.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (211.8 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

orjson-3.5.4-cp39-cp39-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (424.3 kB view details)

Uploaded CPython 3.9macOS 10.9+ universal2 (ARM64, x86-64)macOS 10.9+ x86-64macOS 11.0+ ARM64

orjson-3.5.4-cp39-cp39-macosx_10_7_x86_64.whl (226.9 kB view details)

Uploaded CPython 3.9macOS 10.7+ x86-64

orjson-3.5.4-cp38-none-win_amd64.whl (180.7 kB view details)

Uploaded CPython 3.8Windows x86-64

orjson-3.5.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (229.8 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

orjson-3.5.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (211.8 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

orjson-3.5.4-cp38-cp38-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (424.3 kB view details)

Uploaded CPython 3.8macOS 10.9+ universal2 (ARM64, x86-64)macOS 10.9+ x86-64macOS 11.0+ ARM64

orjson-3.5.4-cp38-cp38-macosx_10_7_x86_64.whl (226.9 kB view details)

Uploaded CPython 3.8macOS 10.7+ x86-64

orjson-3.5.4-cp37-none-win_amd64.whl (180.7 kB view details)

Uploaded CPython 3.7Windows x86-64

orjson-3.5.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (229.9 kB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

orjson-3.5.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (211.8 kB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ ARM64

orjson-3.5.4-cp37-cp37m-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (424.3 kB view details)

Uploaded CPython 3.7mmacOS 10.9+ universal2 (ARM64, x86-64)macOS 10.9+ x86-64macOS 11.0+ ARM64

orjson-3.5.4-cp37-cp37m-macosx_10_7_x86_64.whl (227.0 kB view details)

Uploaded CPython 3.7mmacOS 10.7+ x86-64

orjson-3.5.4-cp36-none-win_amd64.whl (180.7 kB view details)

Uploaded CPython 3.6Windows x86-64

orjson-3.5.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (229.9 kB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.17+ x86-64

orjson-3.5.4-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (211.9 kB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.17+ ARM64

orjson-3.5.4-cp36-cp36m-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (424.3 kB view details)

Uploaded CPython 3.6mmacOS 10.9+ universal2 (ARM64, x86-64)macOS 10.9+ x86-64macOS 11.0+ ARM64

orjson-3.5.4-cp36-cp36m-macosx_10_7_x86_64.whl (227.0 kB view details)

Uploaded CPython 3.6mmacOS 10.7+ x86-64

File details

Details for the file orjson-3.5.4.tar.gz.

File metadata

  • Download URL: orjson-3.5.4.tar.gz
  • Upload date:
  • Size: 742.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.10.6

File hashes

Hashes for orjson-3.5.4.tar.gz
Algorithm Hash digest
SHA256 ff518ad10adf5fdefe20e1098b55710d73ac6774bd6840e6edb2a3b55d640240
MD5 f8c21e1f08ca30a2a2184528f5ee3f47
BLAKE2b-256 622eeca5b0a7075a97b2a3e661e80d2379c06cef16a0b125fc24c4a355e38cee

See more details on using hashes here.

File details

Details for the file orjson-3.5.4-cp310-cp310-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.5.4-cp310-cp310-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 12f45867b0de52487ce2d739cb7f0d7a912ddec897a9fd1781173285e66334d0
MD5 4c2dd384df81dedde55bf8000bd2afe1
BLAKE2b-256 eae0916840ad7082d0fd30b344a81c21380421f1b50461c994f7377a520b2c58

See more details on using hashes here.

File details

Details for the file orjson-3.5.4-cp310-cp310-manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for orjson-3.5.4-cp310-cp310-manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 cc687744ee2707ac68467273c4bf371b4c73c50c412bd0053ae8357ad380884e
MD5 11af555e36d5ba069fa79fb74ac36c5d
BLAKE2b-256 36cb745cbd1f16ee64da14e3fe08e3e0528e3901a6265afe52de16bf3e2d20cc

See more details on using hashes here.

File details

Details for the file orjson-3.5.4-cp39-none-win_amd64.whl.

File metadata

  • Download URL: orjson-3.5.4-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 180.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.10.6

File hashes

Hashes for orjson-3.5.4-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 d94f490da4e2f2f31e21acd1df8d6b2a8ee37e9872ef81b5a50e94c35d8f8c25
MD5 012669ba50f05f55c9348ef9381fd15c
BLAKE2b-256 3d02b2f87fa9eff0e2d3a412e0e3ff209f688cc15a85aa21012837187f9cacd1

See more details on using hashes here.

File details

Details for the file orjson-3.5.4-cp39-cp39-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.5.4-cp39-cp39-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 872eae46544f47fd94ee8f433496a428bf170fb41fbacfe72cd3a15af55ecfff
MD5 1ff3a2e3aa12c2e5094323dce0705f9d
BLAKE2b-256 38ebfbe90f71bbba9b415476086d636425b421705a940d0d9f522f9a258e4070

See more details on using hashes here.

File details

Details for the file orjson-3.5.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.5.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5d39eea5bb3387e0dda3035bc7befca9e54cd707c636e9831b8814db1569d3c3
MD5 30be17eb6f2c51ee03a1d1ee63abf08f
BLAKE2b-256 7efc892b0ce6bd5a3c88f49531ff1a2961d4d9747ddff2447c7d745b7cb20be0

See more details on using hashes here.

File details

Details for the file orjson-3.5.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for orjson-3.5.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 751858f4b22e43d2a68df876b414ec2a988ceef326f520b372f5695b3937b533
MD5 35a4c40aea7a3861affb15c15dc6d3b6
BLAKE2b-256 7358f33b7805442d45e65a26875fe304b94270446ba84adfdb691668c710b7bb

See more details on using hashes here.

File details

Details for the file orjson-3.5.4-cp39-cp39-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for orjson-3.5.4-cp39-cp39-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 4c91dcc78a1e9022f8b08a20dca7e3b517582173e468a04193f0309025910496
MD5 231f540bdd0f6028cdad3efc92347960
BLAKE2b-256 c5349fcb631372944761dc74b22fd0329bb79e96e0f1817bb586fcb65a81eb59

See more details on using hashes here.

File details

Details for the file orjson-3.5.4-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.5.4-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 f4ef393053ef9d928def45468f84b8a850624c25e6960285b97ab5cfe03d5e45
MD5 8649d22051fa3aa8d626d341a8b05685
BLAKE2b-256 b6be9252fbc4cb76371c95109ab4ca69c62eab284984b65130d153702bdb7ee3

See more details on using hashes here.

File details

Details for the file orjson-3.5.4-cp38-none-win_amd64.whl.

File metadata

  • Download URL: orjson-3.5.4-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 180.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.10.6

File hashes

Hashes for orjson-3.5.4-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 6844fb152d9449405fb4f9f930d1ae98a893539025b22f3b22b8a85b6c86edce
MD5 b252c609a9b31bdd5f2302a0b88cbc4d
BLAKE2b-256 104e15f44940ada0b4ca425f20b54e32ad00b32524b2f2ba44c163e3c96ebac6

See more details on using hashes here.

File details

Details for the file orjson-3.5.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.5.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ab65e7f1f5fa3bf45cac52579e481cc5f67af70539b1f2d806ce58e8907bee8b
MD5 25beb44e2266130ee11fbed1c7102b3e
BLAKE2b-256 4acbb9c724226e626e2c0e1c132a2651e67d7e659418f16d67ce9739006c0a8b

See more details on using hashes here.

File details

Details for the file orjson-3.5.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for orjson-3.5.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b76528ae585c7de70f466f8cc60798507c7b2ce1f15a6bb127de68b5ebfb8e42
MD5 7e29b0f2670c8ea366ce0e8f68fb5232
BLAKE2b-256 1f66d2ce207d8a6e7ebb26527d946e913abdd851c340ba62014ceed5271ae6d6

See more details on using hashes here.

File details

Details for the file orjson-3.5.4-cp38-cp38-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for orjson-3.5.4-cp38-cp38-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 7ab65d949318c13111432d222f2bad7e1990f482fb80c0704edf3b5c419d3a8b
MD5 c9a2354830bb5b17a8021e264201a5f2
BLAKE2b-256 42c2bcc2cab19d4a10326d7de47dcccfc061a7aa592b9b724b3e9122fd9364ac

See more details on using hashes here.

File details

Details for the file orjson-3.5.4-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.5.4-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 432cd966bae77956e26ecc8f6c6ac9bbd2d108593c70f388305c3cb1990a1614
MD5 b1deaf116769e8b1360a664461e94dd5
BLAKE2b-256 cdd33ca3c1c1d3fbc82d5d344a2cd625eecdf309c061121a60525290fcef4a3a

See more details on using hashes here.

File details

Details for the file orjson-3.5.4-cp37-none-win_amd64.whl.

File metadata

  • Download URL: orjson-3.5.4-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 180.7 kB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.10.6

File hashes

Hashes for orjson-3.5.4-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 945143f8e88c57cf105418c882c8dd998bac24a4425dc17b7ea2fcf3c8edeedc
MD5 0fe019d064a33e9c87b128c46ffcbb32
BLAKE2b-256 b8e628eeca8da975749d4f68b3413312d95b7fb6aa963265443f4011ca48f47c

See more details on using hashes here.

File details

Details for the file orjson-3.5.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.5.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 57d38172b3b010efa5d2bd83df612353028570fc3fc5cecba743df98624c43bf
MD5 cb6f8b51ce9f0befd6c19bf4f2908180
BLAKE2b-256 32726ab4b31f739cdc46ac395b4d223c86ded0bdba1de1c807b778ddf3019fd9

See more details on using hashes here.

File details

Details for the file orjson-3.5.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for orjson-3.5.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0b2a0f926a05ebe3f90da6aaff406f0ab1507d6fc6c5e2202a84fc64d2d0f167
MD5 28bb9d244bfd673a9b1eef1fc47200ba
BLAKE2b-256 7857aa44033ad1835de55bf52ebba657c1cc751558330cca8df0f1defafc6db6

See more details on using hashes here.

File details

Details for the file orjson-3.5.4-cp37-cp37m-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for orjson-3.5.4-cp37-cp37m-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 ea9657b3662105180a959b25368b7309827133aef3df7ef2bdd18aebdc1edec2
MD5 2489d049a7db18b9efdd2c95af536d27
BLAKE2b-256 f59c25a028b45bdf840afc12cea30e850083a1070fa0ad9ecfd1962a51f1136c

See more details on using hashes here.

File details

Details for the file orjson-3.5.4-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.5.4-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 486cf365bae0a0b6a3a7d0920519be4c0c293d8ddaa3882eb2a06253c427c1fa
MD5 8898989f9083cabcc9d283d779dce47c
BLAKE2b-256 d71bcf7d4a571830e693b7467717c6539d1378d4149b7ae7b2e29595cdb22909

See more details on using hashes here.

File details

Details for the file orjson-3.5.4-cp36-none-win_amd64.whl.

File metadata

  • Download URL: orjson-3.5.4-cp36-none-win_amd64.whl
  • Upload date:
  • Size: 180.7 kB
  • Tags: CPython 3.6, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.10.6

File hashes

Hashes for orjson-3.5.4-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 2ab6607a104efba1ed8994095c417555712a727290426249961bb75deef80d7e
MD5 312ead097b67a45369e7193bb885fc76
BLAKE2b-256 b44bc760ab576471ddf2132696edca38896b48a2ada45035e4b789beb30530d2

See more details on using hashes here.

File details

Details for the file orjson-3.5.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.5.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 48e93a1297f5021457c50cbeca72ef763fb481509c8d10b1eae41e6aa7350173
MD5 d0db0f0b9e4212208a4cbf70ae30aa24
BLAKE2b-256 13a35bfa94586319dcfec324bfb043b5bb749b7703ccd9f487f17cf650ce2fb0

See more details on using hashes here.

File details

Details for the file orjson-3.5.4-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for orjson-3.5.4-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d2e5b550981843d5737e76b773e0ab0a8f10c6a519aadd0f1edc66b3362afd9c
MD5 f2193fe0ca1dd71143ac28478215acf5
BLAKE2b-256 7b42ae2512280369d4efe7d7936175885c5d25f4293bb316d2b04f94e08a21aa

See more details on using hashes here.

File details

Details for the file orjson-3.5.4-cp36-cp36m-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for orjson-3.5.4-cp36-cp36m-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 66dba60d015396391012beeb1543cb78b16b96e7ceb0045cddac03c08cdea6fa
MD5 edb158d417b89a91701049ff1956eedd
BLAKE2b-256 8f669468ccbd9900533eb938ab8b405bea39afd6f3b6d24288e84eb194c38608

See more details on using hashes here.

File details

Details for the file orjson-3.5.4-cp36-cp36m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.5.4-cp36-cp36m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 50e97976f6a94076c0f99efb05782ea102c64e4d392160ba44bd519d5324185e
MD5 5e9ac85fa30310b0eb0488ab4e69e8a5
BLAKE2b-256 0548fc5193ccc9d74fb8ad466aa427a43c0c7655c27b32cb81f95d8de74eae8f

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page