Skip to main content

Fast, correct Python JSON library supporting dataclasses and datetimes

Project description

orjson

orjson is a fast, correct JSON library for Python. It benchmarks as the fastest Python library for JSON and is more correct than the standard json library or third-party libraries. It serializes dataclass and datetime instances.

Its features and drawbacks compared to other Python JSON libraries:

  • serializes dataclass instances 40-50x as fast as other libraries
  • serializes datetime, date, and time instances to RFC 3339 format, e.g., "1970-01-01T00:00:00+00:00"
  • serializes to bytes rather than str, i.e., is not a drop-in replacement
  • serializes str without escaping unicode to ASCII, e.g., "好" rather than "\\u597d"
  • serializes float 10x faster and deserializes twice as fast as other libraries
  • serializes arbitrary types using a default hook
  • has strict UTF-8 conformance, more correct than the standard library
  • has strict JSON conformance in not supporting Nan/Infinity/-Infinity
  • has an option for strict JSON conformance on 53-bit integers with default support for 64-bit
  • does not support subclasses by default, requiring use of default hook
  • does not support pretty printing
  • does not provide load() or dump() functions for reading from/writing to file-like objects

orjson supports CPython 3.6, 3.7, 3.8, and 3.9. It distributes wheels for Linux, macOS, and Windows. The manylinux1 wheel differs from PEP 513 in requiring glibc 2.18, released 2013, or later. orjson does not support PyPy.

orjson is licensed under both the Apache 2.0 and MIT licenses. The repository and issue tracker is github.com/ijl/orjson, and patches may be submitted there. There is a CHANGELOG available in the repository.

  1. Usage
    1. Install
    2. Serialize
      1. default
      2. option
    3. Deserialize
  2. Types
    1. dataclass
    2. datetime
    3. float
    4. int
    5. str
    6. UUID
  3. Testing
  4. Performance
    1. Latency
    2. Memory
    3. Reproducing
  5. License

Usage

Install

To install a wheel from PyPI:

pip install --upgrade orjson

To build from source requires Rust on the nightly channel. Package a wheel from a PEP 517 source distribution using pip:

pip wheel --no-binary=orjson orjson

There are no runtime dependencies other than libc. orjson is compatible with systems using glibc earlier than 2.18 if compiled on such a system. Tooling does not currently support musl libc.

Serialize

def dumps(
    __obj: Any,
    default: Optional[Callable[[Any], Any]] = ...,
    option: Optional[int] = ...,
) -> bytes: ...

dumps() serializes Python objects to JSON.

It natively serializes str, dict, list, tuple, int, float, bool, dataclasses.dataclass, typing.TypedDict, datetime.datetime, datetime.date, datetime.time, and None instances. It supports arbitrary types through default. It does not serialize subclasses of supported types natively, with the exception of dataclasses.dataclass subclasses.

It raises JSONEncodeError on an unsupported type. This exception message describes the invalid object.

It raises JSONEncodeError on a str that contains invalid UTF-8.

It raises JSONEncodeError on an integer that exceeds 64 bits by default or, with OPT_STRICT_INTEGER, 53 bits.

It raises JSONEncodeError if a dict has a key of a type other than str.

It raises JSONEncodeError if the output of default recurses to handling by default more than 254 levels deep.

It raises JSONEncodeError on circular references.

It raises JSONEncodeError if a tzinfo on a datetime object is incorrect.

JSONEncodeError is a subclass of TypeError. This is for compatibility with the standard library.

default

To serialize a subclass or arbitrary types, specify default as a callable that returns a supported type. default may be a function, lambda, or callable class instance. To specify that a type was not handled by default, raise an exception such as TypeError.

>>> import orjson, decimal
>>>
def default(obj):
    if isinstance(obj, decimal.Decimal):
        return str(obj)
    raise TypeError

>>> orjson.dumps(decimal.Decimal("0.0842389659712649442845"))
JSONEncodeError: Type is not JSON serializable: decimal.Decimal
>>> orjson.dumps(decimal.Decimal("0.0842389659712649442845"), default=default)
b'"0.0842389659712649442845"'
>>> orjson.dumps({1, 2}, default=default)
JSONEncodeError: Type raised exception in default function: set

The default callable may return an object that itself must be handled by default up to 254 times before an exception is raised.

It is important that default raise an exception if a type cannot be handled. Python otherwise implicitly returns None, which appears to the caller like a legitimate value and is serialized:

>>> import orjson, json, rapidjson
>>>
def default(obj):
    if isinstance(obj, decimal.Decimal):
        return str(obj)

>>> orjson.dumps({"set":{1, 2}}, default=default)
b'{"set":null}'
>>> json.dumps({"set":{1, 2}}, default=default)
'{"set":null}'
>>> rapidjson.dumps({"set":{1, 2}}, default=default)
'{"set":null}'

option

To modify how data is serialized, specify option. Each option is an integer constant in orjson. To specify multiple options, mask them together, e.g., option=orjson.OPT_STRICT_INTEGER | orjson.OPT_NAIVE_UTC.

OPT_NAIVE_UTC

Serialize datetime.datetime objects without a tzinfo as UTC. This has no effect on datetime.datetime objects that have tzinfo set.

>>> import orjson, datetime
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0),
    )
b'"1970-01-01T00:00:00"'
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0),
        option=orjson.OPT_NAIVE_UTC,
    )
b'"1970-01-01T00:00:00+00:00"'
OPT_OMIT_MICROSECONDS

Do not serialize the microsecond field on datetime.datetime and datetime.time instances.

>>> import orjson, datetime
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0, 1),
    )
b'"1970-01-01T00:00:00.000001"'
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0, 1),
        option=orjson.OPT_OMIT_MICROSECONDS,
    )
b'"1970-01-01T00:00:00"'
OPT_SERIALIZE_DATACLASS

Serialize dataclasses.dataclass instances. For more, see dataclass.

OPT_SERIALIZE_UUID

Serialize uuid.UUID instances. For more, see UUID.

OPT_SORT_KEYS

Serialize dict keys in sorted order. The default is to serialize in an unspecified order. This is equivalent to sort_keys=True in the standard library.

This can be used to ensure the order is deterministic for hashing or tests. It has a substantial performance penalty and is not recommended in general.

>>> import orjson
>>> orjson.dumps({"b": 1, "c": 2, "a": 3})
b'{"b":1,"c":2,"a":3}'
>>> orjson.dumps({"b": 1, "c": 2, "a": 3}, option=orjson.OPT_SORT_KEYS)
b'{"a":3,"b":1,"c":2}'

This measures serializing the twitter.json fixture unsorted and sorted:

Library unsorted (ms) sorted (ms) vs. orjson
orjson 0.68 1.01 1
ujson 1.7 2.65 2
rapidjson 2.23 2.91 2
simplejson 3.19 4.49 4
json 3.04 3.9 3

The benchmark can be reproduced using the pysort script.

The sorting is not collation/locale-aware:

>>> import orjson
>>> orjson.dumps({"a": 1, "ä": 2, "A": 3}, option=orjson.OPT_SORT_KEYS)
b'{"A":3,"a":1,"\xc3\xa4":2}'

This is the same sorting behavior as the standard library, rapidjson, simplejson, and ujson.

dataclass also serialize as maps but this has no effect on them.

OPT_STRICT_INTEGER

Enforce 53-bit limit on integers. The limit is otherwise 64 bits, the same as the Python standard library. For more, see int.

OPT_UTC_Z

Serialize a UTC timezone on datetime.datetime instances as Z instead of +00:00.

>>> import orjson, datetime
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=datetime.timezone.utc),
    )
b'"1970-01-01T00:00:00+00:00"'
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=datetime.timezone.utc),
        option=orjson.OPT_UTC_Z
    )
b'"1970-01-01T00:00:00Z"'

Deserialize

def loads(__obj: Union[bytes, bytearray, str]) -> Any: ...

loads() deserializes JSON to Python objects. It deserializes to dict, list, int, float, str, bool, and None objects.

bytes, bytearray, and str input are accepted. If the input exists as bytes (was read directly from a source), it is recommended to pass bytes. This has lower memory usage and lower latency.

orjson maintains a cache of map keys for the duration of the process. This causes a net reduction in memory usage by avoiding duplicate strings. The keys must be at most 64 chars to be cached and 512 entries are stored.

It raises JSONDecodeError if given an invalid type or invalid JSON. This includes if the input contains NaN, Infinity, or -Infinity, which the standard library allows, but is not valid JSON.

JSONDecodeError is a subclass of json.JSONDecodeError and ValueError. This is for compatibility with the standard library.

Types

dataclass

orjson serializes instances of dataclasses.dataclass natively. It serializes instances 40-50x as fast as other libraries and avoids a severe slowdown seen in other libraries compared to serializing dict. To serialize instances, specify option=orjson.OPT_SERIALIZE_DATACLASS. The option is required so that users may continue to use default until the implementation allows customizing instances' serialization.

It is supported to pass all variants of dataclasses, including dataclasses using __slots__, frozen dataclasses, those with optional or default attributes, and subclasses. There is a performance benefit to not using __slots__.

Library dict (ms) dataclass (ms) vs. orjson
orjson 1.64 1.86 1
ujson
rapidjson 3.90 86.75 46
simplejson 17.40 103.84 55
json 12.90 98.37 52

This measures serializing 555KiB of JSON, orjson natively and other libraries using default to serialize the output of dataclasses.asdict(). This can be reproduced using the pydataclass script.

Dataclasses are serialized as maps, with every attribute serialized and in the order given on class definition:

>>> import dataclasses, orjson, typing

@dataclasses.dataclass
class Member:
    id: int
    active: bool = dataclasses.field(default=False)

@dataclasses.dataclass
class Object:
    id: int
    name: str
    members: typing.List[Member]

>>> orjson.dumps(
        Object(1, "a", [Member(1, True), Member(2)]),
        option=orjson.OPT_SERIALIZE_DATACLASS,
    )
b'{"id":1,"name":"a","members":[{"id":1,"active":true},{"id":2,"active":false}]}'

Users may wish to control how dataclass instances are serialized, e.g., to not serialize an attribute or to change the name of an attribute when serialized. orjson may implement support using the metadata mapping on field attributes, e.g., field(metadata={"json_serialize": False}), if use cases are clear.

datetime

orjson serializes datetime.datetime objects to RFC 3339 format, e.g., "1970-01-01T00:00:00+00:00". This is a subset of ISO 8601 and compatible with isoformat() in the standard library.

>>> import orjson, datetime, pendulum
>>> orjson.dumps(
    datetime.datetime(2018, 12, 1, 2, 3, 4, 9, tzinfo=pendulum.timezone('Australia/Adelaide'))
)
b'"2018-12-01T02:03:04.000009+10:30"'
>>> orjson.dumps(
    datetime.datetime.fromtimestamp(4123518902).replace(tzinfo=datetime.timezone.utc)
)
b'"2100-09-01T21:55:02+00:00"'
>>> orjson.dumps(
    datetime.datetime.fromtimestamp(4123518902)
)
b'"2100-09-01T21:55:02"'

datetime.datetime supports instances with a tzinfo that is None, datetime.timezone.utc or a timezone instance from the pendulum, pytz, or dateutil/arrow libraries.

datetime.time objects must not have a tzinfo.

>>> import orjson, datetime
>>> orjson.dumps(datetime.time(12, 0, 15, 290))
b'"12:00:15.000290"'

datetime.date objects will always serialize.

>>> import orjson, datetime
>>> orjson.dumps(datetime.date(1900, 1, 2))
b'"1900-01-02"'

Errors with tzinfo result in JSONEncodeError being raised.

It is faster to have orjson serialize datetime objects than to do so before calling dumps(). If using an unsupported type such as pendulum.datetime, use default.

float

orjson serializes and deserializes floats with no loss of precision and consistent rounding. The same behavior is observed in rapidjson, simplejson, and json. ujson is inaccurate in both serialization and deserialization, i.e., it modifies the data.

orjson.dumps() serializes Nan, Infinity, and -Infinity, which are not compliant JSON, as null:

>>> import orjson, ujson, rapidjson, json
>>> orjson.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
b'[null,null,null]'
>>> ujson.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
OverflowError: Invalid Inf value when encoding double
>>> rapidjson.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
'[NaN,Infinity,-Infinity]'
>>> json.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
'[NaN, Infinity, -Infinity]'

int

JSON only requires that implementations accept integers with 53-bit precision. orjson will, by default, serialize 64-bit integers. This is compatible with the Python standard library and other non-browser implementations. For transmitting JSON to a web browser or other strict implementations, dumps() can be configured to raise a JSONEncodeError on values exceeding the 53-bit range.

>>> import orjson
>>> orjson.dumps(9007199254740992)
b'9007199254740992'
>>> orjson.dumps(9007199254740992, option=orjson.OPT_STRICT_INTEGER)
JSONEncodeError: Integer exceeds 53-bit range
>>> orjson.dumps(-9007199254740992, option=orjson.OPT_STRICT_INTEGER)
JSONEncodeError: Integer exceeds 53-bit range

str

orjson is strict about UTF-8 conformance. This is stricter than the standard library's json module, which will serialize and deserialize UTF-16 surrogates, e.g., "\ud800", that are invalid UTF-8.

If orjson.dumps() is given a str that does not contain valid UTF-8, orjson.JSONEncodeError is raised. If loads() receives invalid UTF-8, orjson.JSONDecodeError is raised.

orjson and rapidjson are the only compared JSON libraries to consistently error on bad input.

>>> import orjson, ujson, rapidjson, json
>>> orjson.dumps('\ud800')
JSONEncodeError: str is not valid UTF-8: surrogates not allowed
>>> ujson.dumps('\ud800')
UnicodeEncodeError: 'utf-8' codec ...
>>> rapidjson.dumps('\ud800')
UnicodeEncodeError: 'utf-8' codec ...
>>> json.dumps('\ud800')
'"\\ud800"'
>>> orjson.loads('"\\ud800"')
JSONDecodeError: unexpected end of hex escape at line 1 column 8: line 1 column 1 (char 0)
>>> ujson.loads('"\\ud800"')
''
>>> rapidjson.loads('"\\ud800"')
ValueError: Parse error at offset 1: The surrogate pair in string is invalid.
>>> json.loads('"\\ud800"')
'\ud800'

UUID

orjson serializes uuid.UUID instances to RFC 4122 format, e.g., "f81d4fae-7dec-11d0-a765-00a0c91e6bf6". This requires specifying option=orjson.OPT_SERIALIZE_UUID.

>>> import orjson, uuid
>>> orjson.dumps(
    uuid.UUID('f81d4fae-7dec-11d0-a765-00a0c91e6bf6'),
    option=orjson.OPT_SERIALIZE_UUID,
)
b'"f81d4fae-7dec-11d0-a765-00a0c91e6bf6"'
>>> orjson.dumps(
    uuid.uuid5(uuid.NAMESPACE_DNS, "python.org"),
    option=orjson.OPT_SERIALIZE_UUID,
)
b'"886313e1-3b8a-5372-9b90-0c9aee199e5d"'

Testing

The library has comprehensive tests. There are tests against fixtures in the JSONTestSuite and nativejson-benchmark repositories. It is tested to not crash against the Big List of Naughty Strings. It is tested to not leak memory. It is tested to not crash against and not accept invalid UTF-8. There are integration tests exercising the library's use in web servers (gunicorn using multiprocess/forked workers) and when multithreaded. It also uses some tests from the ultrajson library.

Performance

Serialization and deserialization performance of orjson is better than ultrajson, rapidjson, simplejson, or json. The benchmarks are done on fixtures of real data:

  • twitter.json, 631.5KiB, results of a search on Twitter for "一", containing CJK strings, dictionaries of strings and arrays of dictionaries, indented.

  • github.json, 55.8KiB, a GitHub activity feed, containing dictionaries of strings and arrays of dictionaries, not indented.

  • citm_catalog.json, 1.7MiB, concert data, containing nested dictionaries of strings and arrays of integers, indented.

  • canada.json, 2.2MiB, coordinates of the Canadian border in GeoJSON format, containing floats and arrays, indented.

Latency

alt text alt text alt text alt text alt text alt text alt text alt text

twitter.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.74 1358.5 1
ujson 1.95 511.1 2.65
rapidjson 2.58 387.1 3.51
simplejson 3.49 287 4.74
json 3.4 294.4 4.61

twitter.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 2.74 364.5 1
ujson 3.01 332.7 1.1
rapidjson 3.98 251.1 1.45
simplejson 3.64 275.5 1.33
json 4.27 234.5 1.56

github.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.08 12278.6 1
ujson 0.19 5243.6 2.33
rapidjson 0.29 3427.9 3.57
simplejson 0.47 2125.3 5.77
json 0.36 2774.1 4.4

github.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.23 4300.7 1
ujson 0.29 3459.3 1.24
rapidjson 0.33 2980.8 1.43
simplejson 0.31 3186.4 1.36
json 0.35 2892.5 1.5

citm_catalog.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 1.21 835 1
ujson 3.33 299.9 2.76
rapidjson 3.8 264.8 3.14
simplejson 12.12 82.7 10.02
json 7.81 129 6.46

citm_catalog.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 5.25 190.5 1
ujson 6.49 154.1 1.24
rapidjson 8 124.9 1.52
simplejson 7.94 125.7 1.51
json 8.62 116.1 1.64

canada.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 5.54 180.6 1
ujson
rapidjson 70.29 14.4 12.69
simplejson 90.03 11.2 16.25
json 73.39 13.6 13.25

canada.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 19.6 51 1
ujson
rapidjson 42.02 23.9 2.14
simplejson 40.19 24.9 2.05
json 41.5 24.1 2.12

If a row is blank, the library did not serialize and deserialize the fixture without modifying it, e.g., returning different values for floating point numbers.

Memory

orjson's memory usage when deserializing is similar to or lower than the standard library and other third-party libraries.

This measures, in the first column, RSS after importing a library and reading the fixture, and in the second column, increases in RSS after repeatedly calling loads() on the fixture.

twitter.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 13.7 2.4
ujson 13.4 4
rapidjson 14.8 6.5
simplejson 13.3 2.5
json 12.8 2.6

github.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 12.9 0.3
ujson 12.5 0.4
rapidjson 13.9 0.6
simplejson 12.5 0.3
json 12.1 0.4

citm_catalog.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 14.6 7.7
ujson 14.5 10.8
rapidjson 15.7 26.1
simplejson 14.3 16
json 14.1 24.1

canada.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 17.1 15.7
ujson
rapidjson 18.1 17.9
simplejson 16.8 19.6
json 16.5 19.5

Reproducing

The above was measured using Python 3.8.1 on Linux with orjson 2.2.1, ujson 1.35, python-rapidson 0.9.1, and simplejson 3.17.0.

The latency results can be reproduced using the pybench and graph scripts. The memory results can be reproduced using the pymem script.

License

orjson was written by ijl <ijl@mailbox.org>, copyright 2018 - 2020, licensed under either the Apache 2 or MIT licenses.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

orjson-2.3.0.tar.gz (512.2 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

orjson-2.3.0-cp39-cp39-manylinux1_x86_64.whl (185.1 kB view details)

Uploaded CPython 3.9

orjson-2.3.0-cp38-none-win_amd64.whl (158.0 kB view details)

Uploaded CPython 3.8Windows x86-64

orjson-2.3.0-cp38-cp38-manylinux1_x86_64.whl (185.1 kB view details)

Uploaded CPython 3.8

orjson-2.3.0-cp38-cp38-macosx_10_7_x86_64.whl (170.6 kB view details)

Uploaded CPython 3.8macOS 10.7+ x86-64

orjson-2.3.0-cp37-none-win_amd64.whl (158.0 kB view details)

Uploaded CPython 3.7Windows x86-64

orjson-2.3.0-cp37-cp37m-manylinux1_x86_64.whl (185.1 kB view details)

Uploaded CPython 3.7m

orjson-2.3.0-cp37-cp37m-macosx_10_7_x86_64.whl (170.6 kB view details)

Uploaded CPython 3.7mmacOS 10.7+ x86-64

orjson-2.3.0-cp36-none-win_amd64.whl (158.1 kB view details)

Uploaded CPython 3.6Windows x86-64

orjson-2.3.0-cp36-cp36m-manylinux1_x86_64.whl (185.2 kB view details)

Uploaded CPython 3.6m

orjson-2.3.0-cp36-cp36m-macosx_10_7_x86_64.whl (170.8 kB view details)

Uploaded CPython 3.6mmacOS 10.7+ x86-64

File details

Details for the file orjson-2.3.0.tar.gz.

File metadata

  • Download URL: orjson-2.3.0.tar.gz
  • Upload date:
  • Size: 512.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for orjson-2.3.0.tar.gz
Algorithm Hash digest
SHA256 ffc8d6d1d92bcf63b62aed5a3969e0d7e2791a419abc195588c34309dd44cfd6
MD5 24e7fd719e86e2375e64a62819f41322
BLAKE2b-256 bced113065f470d0e62b1523a179595608896bc32fdad6e01756011defeca76b

See more details on using hashes here.

File details

Details for the file orjson-2.3.0-cp39-cp39-manylinux1_x86_64.whl.

File metadata

  • Download URL: orjson-2.3.0-cp39-cp39-manylinux1_x86_64.whl
  • Upload date:
  • Size: 185.1 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.1.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.9.0a3

File hashes

Hashes for orjson-2.3.0-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 666625fde47800adab172f31bcf36e9e8957c3db7ed02bc9ca53cc88bff78fdf
MD5 f6d963032ef593b265cd1a65fb6c1489
BLAKE2b-256 ea6e489bfcfc64bd2728ea6b1155daa790b8a826668b32f44de1a4e152fb3fb6

See more details on using hashes here.

File details

Details for the file orjson-2.3.0-cp38-none-win_amd64.whl.

File metadata

  • Download URL: orjson-2.3.0-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 158.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.8.1

File hashes

Hashes for orjson-2.3.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 90dd10caf52b93749cb0e11462aa77d187ad3ed022422c216db67f9eef173410
MD5 38048e30c8dc0c9b8b7c7949f75fce6d
BLAKE2b-256 4475f05383b3509e1c5dbdb584b4e9022fdac8fd3f3a75b95f0af2c5030a5f3f

See more details on using hashes here.

File details

Details for the file orjson-2.3.0-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: orjson-2.3.0-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 185.1 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.1.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.8.1

File hashes

Hashes for orjson-2.3.0-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7ec1abf111112fc366655f1136e6c73082215f8732e1c496bf39f9743910e0c2
MD5 d90c15667b32016b3751e50046524df1
BLAKE2b-256 ee7170e0c0fff0130a6f00e57f4f1ebf1a2a7e95383d0aee1d8a21f696e586d9

See more details on using hashes here.

File details

Details for the file orjson-2.3.0-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

  • Download URL: orjson-2.3.0-cp38-cp38-macosx_10_7_x86_64.whl
  • Upload date:
  • Size: 170.6 kB
  • Tags: CPython 3.8, macOS 10.7+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.8.1

File hashes

Hashes for orjson-2.3.0-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 743488da9d3e4bd748faf9143bb5907b228a1f1eaec2b0aa36d6d66633dba9db
MD5 7ab7629fdf153682f2ccf6518ad498f3
BLAKE2b-256 07d34d27cab7f6efb52345eaa3ccf367ee9916b1eab3dddfd27f2098faedc122

See more details on using hashes here.

File details

Details for the file orjson-2.3.0-cp37-none-win_amd64.whl.

File metadata

  • Download URL: orjson-2.3.0-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 158.0 kB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for orjson-2.3.0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 6fc76acef4065a0a7fcca7371b51cb869f934c41c5bd3cbc1cc3bd3b0ec3c73a
MD5 52c189511b524090de3947a13250a883
BLAKE2b-256 4c2df5ba3b2d39b78d963eec8902654f331343f39b39c7e1cce3093b8076e44f

See more details on using hashes here.

File details

Details for the file orjson-2.3.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: orjson-2.3.0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 185.1 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.1.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for orjson-2.3.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 41199a79eda6bbbfbac3f6736cb9b856ffee6b6f01dec048ef98019208a255cb
MD5 d0c8c8af6d9fb42d102a27c307d9b589
BLAKE2b-256 cf0b90f259967f6934106592e85eef655a211ac588b958373a977b8b1dae0bee

See more details on using hashes here.

File details

Details for the file orjson-2.3.0-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

  • Download URL: orjson-2.3.0-cp37-cp37m-macosx_10_7_x86_64.whl
  • Upload date:
  • Size: 170.6 kB
  • Tags: CPython 3.7m, macOS 10.7+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for orjson-2.3.0-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 11733b904cbbf929d58e99b152b1ab0ec66cea43592ec84dd5027edcbb6af8ee
MD5 75ce79720417d5eba251c19b5bf3edd4
BLAKE2b-256 74177590849424df96f080cfa206df3ec423b444da9cc0cdce56bc3d9f4579d6

See more details on using hashes here.

File details

Details for the file orjson-2.3.0-cp36-none-win_amd64.whl.

File metadata

  • Download URL: orjson-2.3.0-cp36-none-win_amd64.whl
  • Upload date:
  • Size: 158.1 kB
  • Tags: CPython 3.6, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.6.8

File hashes

Hashes for orjson-2.3.0-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 b667929332f66c5f0a47f4c03b5419447563a14d07b52433755dad61b573dea6
MD5 5649f62ecd73569bf2abdd0dfca97d8a
BLAKE2b-256 86d0267f27cd933518a87d7525e62e8446237f330735fcd02b6e378031e16d10

See more details on using hashes here.

File details

Details for the file orjson-2.3.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: orjson-2.3.0-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 185.2 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.1.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.6.10

File hashes

Hashes for orjson-2.3.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 40a652b6f4285b11d487753af83bb46d1600099ea12190b0db61cfb8f03a34d4
MD5 4f1f9f38fbfd6723d1350d813baa64b1
BLAKE2b-256 a29246a18377f4abffe91235e5a07703347cb04419efaee04a72b43a1ce03da2

See more details on using hashes here.

File details

Details for the file orjson-2.3.0-cp36-cp36m-macosx_10_7_x86_64.whl.

File metadata

  • Download URL: orjson-2.3.0-cp36-cp36m-macosx_10_7_x86_64.whl
  • Upload date:
  • Size: 170.8 kB
  • Tags: CPython 3.6m, macOS 10.7+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.6.10

File hashes

Hashes for orjson-2.3.0-cp36-cp36m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 bfbac13a7465aa971dd4d5b3d47741ecb22cfe52e5fee21830caf0893078e745
MD5 be056b9be51bf92426363e6d73580f0c
BLAKE2b-256 efe84cf2bf4e4cd0a5a7c8cab863fe6487775051ade1721c0167cf4c6f1c9dd5

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page