Skip to main content

Fast, correct Python JSON library supporting dataclasses and datetimes

Project description

orjson

orjson is a fast, correct JSON library for Python. It benchmarks as the fastest Python library for JSON and is more correct than the standard json library or third-party libraries. It serializes dataclass and datetime instances by default.

Its serialization performance on fixtures of real data is 2.5x to 9.5x the nearest other library and 4x to 12x the standard library. Its deserialization performance on the same fixtures is 1.2x to 1.3x the nearest other library and 1.4x to 2x the standard library.

Its features and drawbacks compared to other Python JSON libraries:

  • serializes dataclass instances 30x faster than other libraries
  • serializes datetime, date, and time instances to RFC 3339 format, e.g., "1970-01-01T00:00:00+00:00"
  • serializes to bytes rather than str, i.e., is not a drop-in replacement
  • serializes str without escaping unicode to ASCII, e.g., "好" rather than "\\u597d"
  • serializes float 10x faster and deserializes twice as fast as other libraries
  • serializes arbitrary types using a default hook
  • has strict UTF-8 conformance, more correct than the standard library
  • has strict JSON conformance in not supporting Nan/Infinity/-Infinity
  • has an option for strict JSON conformance on 53-bit integers with default support for 64-bit
  • does not support subclasses by default, requiring use of default hook
  • does not support pretty printing
  • does not support sorting dict by keys
  • does not provide load() or dump() functions for reading to/writing from file-like objects

orjson supports CPython 3.6, 3.7, and 3.8. It distributes wheels for Linux, macOS, and Windows. The manylinux2010 wheel differs from PEP 571 in requiring glibc 2.18, released 2013, or later. orjson does not currently support PyPy.

orjson is licensed under both the Apache 2.0 and MIT licenses. The repository and issue tracker is github.com/ijl/orjson, and patches may be submitted there.

  1. Usage
    1. Install
    2. Serialize
    3. Deserialize
  2. Types
    1. dataclass
    2. datetime
    3. float
    4. int
    5. str
  3. Testing
  4. Performance
    1. Latency
    2. Memory
    3. Reproducing

Usage

Install

To install a wheel from PyPI:

pip install --upgrade orjson

To build from source requires Rust on the nightly channel. Package a wheel from a PEP 517 source distribution using pip:

pip wheel --no-binary=orjson orjson

There are no runtime dependencies other than libc. orjson is compatible with systems using glibc earlier than 2.18 if compiled on such a system. Tooling does not currently support musl libc.

Serialize

def dumps(
    __obj: Any,
    default: Optional[Callable[[Any], Any]] = ...,
    option: Optional[int] = ...,
) -> bytes: ...

dumps() serializes Python objects to JSON.

It natively serializes str, dict, list, tuple, int, float, bool, dataclasses.dataclass, typing.TypedDict, datetime.datetime, datetime.date, datetime.time, and None instances. It supports arbitrary types through default. It does not serialize subclasses of supported types natively, with the exception of dataclasses.dataclass subclasses.

To serialize a subclass or arbitrary types, specify default as a callable that returns a supported type. default may be a function, lambda, or callable class instance.

>>> import orjson, numpy
>>>
def default(obj):
    if isinstance(obj, numpy.ndarray):
        return obj.tolist()
>>> orjson.dumps(numpy.random.rand(2, 2), default=default)
b'[[0.08423896597867486,0.854121264944197],[0.8452845446981371,0.19227780743524303]]'

If the default callable does not return an object, and an exception was raised within the default function, an exception describing this is raised. If no object is returned by the default callable but also no exception was raised, it falls through to raising JSONEncodeError on an unsupported type.

The default callable may return an object that itself must be handled by default up to five levels deep before an exception is raised.

dumps() accepts options via an option keyword argument. These include:

  • orjson.OPT_NAIVE_UTC for assuming datetime.datetime objects without a tzinfo are UTC.
  • orjson.OPT_OMIT_MICROSECONDS to not serialize the microseconds field on datetime.datetime and datetime.time instances.
  • orjson.OPT_SERIALIZE_DATACLASS to serialize dataclasses.dataclass instances.
  • orjson.OPT_STRICT_INTEGER for enforcing a 53-bit limit on integers. The limit is otherwise 64 bits, the same as the Python standard library.
  • orjson.OPT_UTC_Z to serialize a UTC timezone on datetime.datetime instances as Z instead of +00:00.

To specify multiple options, mask them together, e.g., option=orjson.OPT_STRICT_INTEGER | orjson.OPT_NAIVE_UTC.

It raises JSONEncodeError on an unsupported type. This exception message describes the invalid object.

It raises JSONEncodeError on a str that contains invalid UTF-8.

It raises JSONEncodeError on an integer that exceeds 64 bits by default or, with OPT_STRICT_INTEGER, 53 bits.

It raises JSONEncodeError if a dict has a key of a type other than str.

It raises JSONEncodeError if the output of default recurses to handling by default more than five levels deep.

It raises JSONEncodeError on circular references.

It raises JSONEncodeError if a tzinfo on a datetime object is incorrect.

JSONEncodeError is a subclass of TypeError. This is for compatibility with the standard library.

Deserialize

def loads(__obj: Union[bytes, bytearray, str]) -> Any: ...

loads() deserializes JSON to Python objects. It deserializes to dict, list, int, float, str, bool, and None objects.

bytes, bytearray, and str input are accepted. If the input exists as bytes (was read directly from a source), it is recommended to pass bytes. This has lower memory usage and lower latency.

orjson maintains a cache of map keys for the duration of the process. This causes a net reduction in memory usage by avoiding duplicate strings. The keys must be at most 64 chars to be cached and 512 entries are stored.

It raises JSONDecodeError if given an invalid type or invalid JSON. This includes if the input contains NaN, Infinity, or -Infinity, which the standard library allows, but is not valid JSON.

JSONDecodeError is a subclass of json.JSONDecodeError and ValueError. This is for compatibility with the standard library.

Types

dataclass

orjson serializes instances of dataclasses.dataclass natively. It serializes instances 30x as fast as other libraries and avoids a severe slowdown seen in other libraries compared to serializing dict. To serialize instances, specify option=orjson.OPT_SERIALIZE_DATACLASS. The option is required so that users may continue to use default until the implementation allows customizing instances' serialization.

It is supported to pass all variants of dataclasses, including dataclasses using __slots__ (which yields a modest performance improvement), frozen dataclasses, those with optional or default attributes, and subclasses.

Library dict (ms) dataclass (ms) dataclass vs. dict vs. orjson
orjson 0.10 0.19 -46% 1
ujson
rapidjson 0.24 6.48 -96% 33
simplejson 1.06 7.94 -86% 40
json 0.92 7.32 -87% 37

This measures orjson serializing instances natively and other libraries using default to serialize the output of dataclasses.asdict(). This can be reproduced using the pydataclass script.

Dataclasses are serialized as maps, with every attribute serialized and in the order given on class definition:

>>> import dataclasses, orjson, typing

@dataclasses.dataclass
class Member:
    id: int
    active: bool = dataclasses.field(default=False)

@dataclasses.dataclass
class Object:
    id: int
    name: str
    members: typing.List[Member]

>>> orjson.dumps(
        Object(1, "a", [Member(1, True), Member(2)]),
        option=orjson.OPT_SERIALIZE_DATACLASS,
    )
b'{"id":1,"name":"a","members":[{"id":1,"active":true},{"id":2,"active":false}]}'

Users may wish to control how dataclass instances are serialized, e.g., to not serialize an attribute or to change the name of an attribute when serialized. orjson may implement support using the metadata mapping on field attributes, e.g., field(metadata={"json_serialize": False}), if use cases are clear.

datetime

orjson serializes datetime.datetime objects to RFC 3339 format, e.g., "1970-01-01T00:00:00+00:00". This is a subset of ISO 8601 and compatible with isoformat() in the standard library.

datetime.datetime objects serialize with or without a tzinfo. For a full RFC 3339 representation, tzinfo must be present or orjson.OPT_NAIVE_UTC must be specified (e.g., for timestamps stored in a database in UTC and deserialized by the database adapter without a tzinfo). If a tzinfo is not present, a timezone offset is not serialized.

tzinfo, if specified, must be a timezone object that is either datetime.timezone.utc or from the pendulum, pytz, or dateutil/arrow libraries.

>>> import orjson, datetime, pendulum
>>> orjson.dumps(
    datetime.datetime(2018, 12, 1, 2, 3, 4, 9, tzinfo=pendulum.timezone('Australia/Adelaide'))
)
b'"2018-12-01T02:03:04.000009+10:30"'
>>> orjson.dumps(
    datetime.datetime.fromtimestamp(4123518902).replace(tzinfo=datetime.timezone.utc)
)
b'"2100-09-01T21:55:02+00:00"'
>>> orjson.dumps(
    datetime.datetime.fromtimestamp(4123518902)
)
b'"2100-09-01T21:55:02"'

orjson.OPT_NAIVE_UTC, if specified, only applies to objects that do not have a tzinfo.

>>> import orjson, datetime, pendulum
>>> orjson.dumps(
    datetime.datetime.fromtimestamp(4123518902),
    option=orjson.OPT_NAIVE_UTC
)
b'"2100-09-01T21:55:02+00:00"'
>>> orjson.dumps(
    datetime.datetime(2018, 12, 1, 2, 3, 4, 9, tzinfo=pendulum.timezone('Australia/Adelaide')),
    option=orjson.OPT_NAIVE_UTC
)
b'"2018-12-01T02:03:04.000009+10:30"'

datetime.time objects must not have a tzinfo.

>>> import orjson, datetime
>>> orjson.dumps(datetime.time(12, 0, 15, 290))
b'"12:00:15.000290"'

datetime.date objects will always serialize.

>>> import orjson, datetime
>>> orjson.dumps(datetime.date(1900, 1, 2))
b'"1900-01-02"'

Errors with tzinfo result in JSONEncodeError being raised.

It is faster to have orjson serialize datetime objects than to do so before calling dumps(). If using an unsupported type such as pendulum.datetime, use default.

float

orjson serializes and deserializes floats with no loss of precision and consistent rounding. The same behavior is observed in rapidjson, simplejson, and json. ujson is inaccurate in both serialization and deserialization, i.e., it modifies the data.

orjson.dumps() serializes Nan, Infinity, and -Infinity, which are not compliant JSON, as null:

>>> import orjson, ujson, rapidjson, json
>>> orjson.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
b'[null,null,null]'
>>> ujson.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
OverflowError: Invalid Inf value when encoding double
>>> rapidjson.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
'[NaN,Infinity,-Infinity]'
>>> json.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
'[NaN, Infinity, -Infinity]'

int

JSON only requires that implementations accept integers with 53-bit precision. orjson will, by default, serialize 64-bit integers. This is compatible with the Python standard library and other non-browser implementations. For transmitting JSON to a web browser or other strict implementations, dumps() can be configured to raise a JSONEncodeError on values exceeding the 53-bit range.

>>> import orjson
>>> orjson.dumps(9007199254740992)
b'9007199254740992'
>>> orjson.dumps(9007199254740992, option=orjson.OPT_STRICT_INTEGER)
JSONEncodeError: Integer exceeds 53-bit range
>>> orjson.dumps(-9007199254740992, option=orjson.OPT_STRICT_INTEGER)
JSONEncodeError: Integer exceeds 53-bit range

str

orjson is strict about UTF-8 conformance. This is stricter than the standard library's json module, which will serialize and deserialize UTF-16 surrogates, e.g., "\ud800", that are invalid UTF-8.

If orjson.dumps() is given a str that does not contain valid UTF-8, orjson.JSONEncodeError is raised. If loads() receives invalid UTF-8, orjson.JSONDecodeError is raised.

orjson and rapidjson are the only compared JSON libraries to consistently error on bad input.

>>> import orjson, ujson, rapidjson, json
>>> orjson.dumps('\ud800')
JSONEncodeError: str is not valid UTF-8: surrogates not allowed
>>> ujson.dumps('\ud800')
UnicodeEncodeError: 'utf-8' codec ...
>>> rapidjson.dumps('\ud800')
UnicodeEncodeError: 'utf-8' codec ...
>>> json.dumps('\ud800')
'"\\ud800"'
>>> orjson.loads('"\\ud800"')
JSONDecodeError: unexpected end of hex escape at line 1 column 8: line 1 column 1 (char 0)
>>> ujson.loads('"\\ud800"')
''
>>> rapidjson.loads('"\\ud800"')
ValueError: Parse error at offset 1: The surrogate pair in string is invalid.
>>> json.loads('"\\ud800"')
'\ud800'

Testing

The library has comprehensive tests. There are tests against fixtures in the JSONTestSuite and nativejson-benchmark repositories. It is tested to not crash against the Big List of Naughty Strings. It is tested to not leak memory. It is tested to be correct against input from the PyJFuzz JSON fuzzer. It is tested to not crash against and not accept invalid UTF-8. There are integration tests exercising the library's use in web servers (gunicorn using multiprocess/forked workers) and when multithreaded. It also uses some tests from the ultrajson library.

Performance

Serialization and deserialization performance of orjson is better than ultrajson, rapidjson, simplejson, or json. The benchmarks are done on fixtures of real data:

  • twitter.json, 631.5KiB, results of a search on Twitter for "一", containing CJK strings, dictionaries of strings and arrays of dictionaries, indented.

  • github.json, 55.8KiB, a GitHub activity feed, containing dictionaries of strings and arrays of dictionaries, not indented.

  • citm_catalog.json, 1.7MiB, concert data, containing nested dictionaries of strings and arrays of integers, indented.

  • canada.json, 2.2MiB, coordinates of the Canadian border in GeoJSON format, containing floats and arrays, indented.

Latency

alt text alt text alt text alt text alt text alt text alt text alt text

twitter.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.75 1297.5 1
ujson 2.06 483.5 2.74
rapidjson 2.12 470.7 2.82
simplejson 3.55 275.2 4.73
json 3.57 277.8 4.75

twitter.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 3.29 302.3 1
ujson 3.65 281.2 1.11
rapidjson 5.6 179.1 1.7
simplejson 5.19 188.3 1.58
json 5.62 184.2 1.71

github.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.08 12363.5 1
ujson 0.2 4834.3 2.55
rapidjson 0.23 4385.4 2.84
simplejson 0.42 2360.3 5.28
json 0.36 2709.1 4.53

github.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.25 3992.4 1
ujson 0.32 3065.1 1.28
rapidjson 0.42 2400.2 1.68
simplejson 0.3 3293.5 1.21
json 0.38 2410 1.54

citm_catalog.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 1.27 746.2 1
ujson 3.63 257.1 2.86
rapidjson 3.52 279.8 2.77
simplejson 14.37 66.6 11.31
json 8.28 120.2 6.52

citm_catalog.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 5.61 175.8 1
ujson 6.78 146.8 1.21
rapidjson 7.71 129.4 1.37
simplejson 9.01 108.8 1.61
json 8.49 116.1 1.51

canada.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 5.28 189.6 1
ujson
rapidjson 69.38 14.3 13.14
simplejson 99.43 9.4 18.84
json 76.44 12.9 14.48

canada.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 22.22 45.1 1
ujson
rapidjson 44.56 21.4 2.01
simplejson 42.99 23.2 1.93
json 44.69 21.4 2.01

If a row is blank, the library did not serialize and deserialize the fixture without modifying it, e.g., returning different values for floating point numbers.

Memory

orjson's memory usage when deserializing is similar to or lower than the standard library and other third-party libraries.

This measures, in the first column, RSS after importing a library and reading the fixture, and in the second column, increases in RSS after repeatedly calling loads() on the fixture.

twitter.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 12.9 2.8
ujson 12.8 4.6
rapidjson 14.5 6.5
simplejson 13.1 2.7
json 12.5 2.4

github.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 12.3 0.3
ujson 12.6 0.5
rapidjson 13.9 0.4
simplejson 12.5 0.3
json 11.7 0.3

citm_catalog.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 13.7 8.5
ujson 13.9 12
rapidjson 15.4 30.2
simplejson 14.1 25
json 13.5 24.9

canada.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 16.5 17.5
ujson
rapidjson 17.9 19.6
simplejson 16.6 21.3
json 16.0 21.3

Reproducing

The above was measured using Python 3.7.4 on Linux with orjson 2.1.0, ujson 1.35, python-rapidson 0.8.0, and simplejson 3.16.0.

The latency results can be reproduced using the pybench and graph scripts. The memory results can be reproduced using the pymem script.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

orjson-2.1.0.tar.gz (506.2 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

orjson-2.1.0-cp38-cp38-manylinux2010_x86_64.whl (173.0 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.12+ x86-64

orjson-2.1.0-cp38-cp38-manylinux1_x86_64.whl (173.8 kB view details)

Uploaded CPython 3.8

orjson-2.1.0-cp37-none-win_amd64.whl (148.5 kB view details)

Uploaded CPython 3.7Windows x86-64

orjson-2.1.0-cp37-cp37m-manylinux2010_x86_64.whl (172.9 kB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.12+ x86-64

orjson-2.1.0-cp37-cp37m-manylinux1_x86_64.whl (173.7 kB view details)

Uploaded CPython 3.7m

orjson-2.1.0-cp37-cp37m-macosx_10_7_x86_64.whl (158.8 kB view details)

Uploaded CPython 3.7mmacOS 10.7+ x86-64

orjson-2.1.0-cp36-none-win_amd64.whl (148.7 kB view details)

Uploaded CPython 3.6Windows x86-64

orjson-2.1.0-cp36-cp36m-manylinux2010_x86_64.whl (173.0 kB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.12+ x86-64

orjson-2.1.0-cp36-cp36m-manylinux1_x86_64.whl (173.8 kB view details)

Uploaded CPython 3.6m

orjson-2.1.0-cp36-cp36m-macosx_10_7_x86_64.whl (158.9 kB view details)

Uploaded CPython 3.6mmacOS 10.7+ x86-64

File details

Details for the file orjson-2.1.0.tar.gz.

File metadata

  • Download URL: orjson-2.1.0.tar.gz
  • Upload date:
  • Size: 506.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for orjson-2.1.0.tar.gz
Algorithm Hash digest
SHA256 2dacd332d18bb3f7bc83bda73ab95bf4ff6e1ebd4a87c55412134387f5722480
MD5 e5e2aac3f37dde7a401c6f479cefa0ad
BLAKE2b-256 b551f95bbca6d650af84ca525d6da2018f6ad60abc4293259d8817e633d8c7ba

See more details on using hashes here.

File details

Details for the file orjson-2.1.0-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: orjson-2.1.0-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 173.0 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.8.0rc1

File hashes

Hashes for orjson-2.1.0-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5c4d7a970cdbe8c68e7f5072f6139a638b631fda3b8dc4f64cc35481567241a3
MD5 0c3371ffad8accc0e1af217973b1ccf6
BLAKE2b-256 d0c90ea49afd73df46020c37285c5b41e48a87d04582dc813f113c782b0d68eb

See more details on using hashes here.

File details

Details for the file orjson-2.1.0-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: orjson-2.1.0-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 173.8 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.8.0rc1

File hashes

Hashes for orjson-2.1.0-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 44684fc253143047a94f8dcfdc012790b48447878d16aec8a463bc328d98b6b8
MD5 f9805df613781a25fcbb89543ae96779
BLAKE2b-256 afb0bb94288d53bffac4e38221ae92dc1452a4c6517b52fbe9624bda21d65c4f

See more details on using hashes here.

File details

Details for the file orjson-2.1.0-cp37-none-win_amd64.whl.

File metadata

  • Download URL: orjson-2.1.0-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 148.5 kB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for orjson-2.1.0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 6d74131ee03dd9075895945a797ee06ba9dd2c602af074a9e5c9f0287ebddd73
MD5 7fc80804cc16216f990d01b846644bf8
BLAKE2b-256 3f98e4390047f3791c32ed090f13b902534be73d4829be6b10326e571141e4bb

See more details on using hashes here.

File details

Details for the file orjson-2.1.0-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: orjson-2.1.0-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 172.9 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for orjson-2.1.0-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 243ae7cacdaf28afaa7aa84aa4150831029fb719fa3d04b9aee1e197372a797f
MD5 9dc04b23ea4aa702da2d0ac990c3017c
BLAKE2b-256 262bf6f30941356692a8b731e0611f494b7c12b8b9008e7b1a97bae2509dabaf

See more details on using hashes here.

File details

Details for the file orjson-2.1.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: orjson-2.1.0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 173.7 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for orjson-2.1.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f13b88e4017eb28dd5ab3c66c98b8139ffc9fcaf22dea36d3ca9b2377b732529
MD5 16798ba6bce082a9a7040e8f20393d57
BLAKE2b-256 e2390ba16a5ae5711ee377d6f266a4438c01f6c3ce44c995aed743a95336a9ac

See more details on using hashes here.

File details

Details for the file orjson-2.1.0-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

  • Download URL: orjson-2.1.0-cp37-cp37m-macosx_10_7_x86_64.whl
  • Upload date:
  • Size: 158.8 kB
  • Tags: CPython 3.7m, macOS 10.7+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for orjson-2.1.0-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 94722a1f6e31f87f8832dfe3e097a3ad8d5a55aedf4b27f22a9fdbece31c2fd7
MD5 2d793daf762525e3115997b5afa4a339
BLAKE2b-256 952f135757124baa42b69ef26c86bed684cdf88b5e7c099b001472efc8919d7c

See more details on using hashes here.

File details

Details for the file orjson-2.1.0-cp36-none-win_amd64.whl.

File metadata

  • Download URL: orjson-2.1.0-cp36-none-win_amd64.whl
  • Upload date:
  • Size: 148.7 kB
  • Tags: CPython 3.6, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.8

File hashes

Hashes for orjson-2.1.0-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 9f3d006fa88052e24c14ab60a5de7281471ff4a873716e0d730f9d9013d9bd9d
MD5 9e7f7cda0ae12bad8a2553c238d9aa86
BLAKE2b-256 80df193dad63c6033c3438523aa01e10e5be9a6e10b31f452e7dd819ded40f00

See more details on using hashes here.

File details

Details for the file orjson-2.1.0-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: orjson-2.1.0-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 173.0 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.9

File hashes

Hashes for orjson-2.1.0-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3ec33eb58aae88ab1809f9260bc6de77f8d38716aa3dcc142b4c4512a219e6b5
MD5 17fe5862c82a1f7c7faf46f146068d1c
BLAKE2b-256 7a6875b5166bacb12cf599bed4576bbeb1b45907102b1bb952e14d2ca6b95558

See more details on using hashes here.

File details

Details for the file orjson-2.1.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: orjson-2.1.0-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 173.8 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.9

File hashes

Hashes for orjson-2.1.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8e96a4232715bf06615aab9136cec598a9520ed4595621aaa63f56336687f3b3
MD5 0f9b283449fb3edd0d5e8c7f8699a428
BLAKE2b-256 3ba2655019253055b2ed2f6347303852ae8de8abc3fe206383eac5a6077870c7

See more details on using hashes here.

File details

Details for the file orjson-2.1.0-cp36-cp36m-macosx_10_7_x86_64.whl.

File metadata

  • Download URL: orjson-2.1.0-cp36-cp36m-macosx_10_7_x86_64.whl
  • Upload date:
  • Size: 158.9 kB
  • Tags: CPython 3.6m, macOS 10.7+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.9

File hashes

Hashes for orjson-2.1.0-cp36-cp36m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 386caabbf665803d38b03a9a2cba3d95c1e904045efb6f5ceacab34aa1fa1665
MD5 6c649b13fb163cb28f0c6296bfe0f122
BLAKE2b-256 c00bf197ea84cec3b86398f8a1b6c8ee7f4a2502554b8ac7b6bcf6895384d5ec

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page