Skip to main content

Fast, correct Python JSON library supporting dataclasses, datetimes, and numpy

Project description

orjson

orjson is a fast, correct JSON library for Python. It benchmarks as the fastest Python library for JSON and is more correct than the standard json library or other third-party libraries. It serializes dataclass, datetime, numpy, and UUID instances natively.

Its features and drawbacks compared to other Python JSON libraries:

  • serializes dataclass instances 40-50x as fast as other libraries
  • serializes datetime, date, and time instances to RFC 3339 format, e.g., "1970-01-01T00:00:00+00:00"
  • serializes numpy.ndarray instances 4-12x as fast with 0.3x the memory usage of other libraries
  • pretty prints 10x to 20x as fast as the standard library
  • serializes to bytes rather than str, i.e., is not a drop-in replacement
  • serializes str without escaping unicode to ASCII, e.g., "好" rather than "\\u597d"
  • serializes float 10x as fast and deserializes twice as fast as other libraries
  • serializes subclasses of str, int, list, and dict natively, requiring default to specify how to serialize others
  • serializes arbitrary types using a default hook
  • has strict UTF-8 conformance, more correct than the standard library
  • has strict JSON conformance in not supporting Nan/Infinity/-Infinity
  • has an option for strict JSON conformance on 53-bit integers with default support for 64-bit
  • does not provide load() or dump() functions for reading from/writing to file-like objects

orjson supports CPython 3.6, 3.7, 3.8, 3.9, and 3.10. It distributes x86_64/amd64 and aarch64/armv8 wheels for Linux and macOS. It distributes x86_64/amd64 wheels for Windows. orjson does not support PyPy. Releases follow semantic versioning and serializing a new object type without an opt-in flag is considered a breaking change.

orjson is licensed under both the Apache 2.0 and MIT licenses. The repository and issue tracker is github.com/ijl/orjson, and patches may be submitted there. There is a CHANGELOG available in the repository.

  1. Usage
    1. Install
    2. Quickstart
    3. Migrating
    4. Serialize
      1. default
      2. option
    5. Deserialize
  2. Types
    1. dataclass
    2. datetime
    3. enum
    4. float
    5. int
    6. numpy
    7. str
    8. uuid
  3. Testing
  4. Performance
    1. Latency
    2. Memory
    3. Reproducing
  5. Questions
  6. Packaging
  7. License

Usage

Install

To install a wheel from PyPI:

pip install --upgrade "pip>=19.3" # manylinux2014 support
pip install --upgrade orjson

Notice that Linux environments with a pip version shipped in 2018 or earlier must first upgrade pip to support manylinux2014 wheels.

To build a wheel, see packaging.

Quickstart

This is an example of serializing, with options specified, and deserializing:

>>> import orjson, datetime, numpy
>>> data = {
    "type": "job",
    "created_at": datetime.datetime(1970, 1, 1),
    "status": "🆗",
    "payload": numpy.array([[1, 2], [3, 4]]),
}
>>> orjson.dumps(data, option=orjson.OPT_NAIVE_UTC | orjson.OPT_SERIALIZE_NUMPY)
b'{"type":"job","created_at":"1970-01-01T00:00:00+00:00","status":"\xf0\x9f\x86\x97","payload":[[1,2],[3,4]]}'
>>> orjson.loads(_)
{'type': 'job', 'created_at': '1970-01-01T00:00:00+00:00', 'status': '🆗', 'payload': [[1, 2], [3, 4]]}

Migrating

orjson version 3 serializes more types than version 2. Subclasses of str, int, dict, and list are now serialized. This is faster and more similar to the standard library. It can be disabled with orjson.OPT_PASSTHROUGH_SUBCLASS.dataclasses.dataclass instances are now serialized by default and cannot be customized in a default function unless option=orjson.OPT_PASSTHROUGH_DATACLASS is specified. uuid.UUID instances are serialized by default. For any type that is now serialized, implementations in a default function and options enabling them can be removed but do not need to be. There was no change in deserialization.

To migrate from the standard library, the largest difference is that orjson.dumps returns bytes and json.dumps returns a str. Users with dict objects using non-str keys should specify option=orjson.OPT_NON_STR_KEYS. sort_keys is replaced by option=orjson.OPT_SORT_KEYS. indent is replaced by option=orjson.OPT_INDENT_2 and other levels of indentation are not supported.

Serialize

def dumps(
    __obj: Any,
    default: Optional[Callable[[Any], Any]] = ...,
    option: Optional[int] = ...,
) -> bytes: ...

dumps() serializes Python objects to JSON.

It natively serializes str, dict, list, tuple, int, float, bool, dataclasses.dataclass, typing.TypedDict, datetime.datetime, datetime.date, datetime.time, uuid.UUID, numpy.ndarray, and None instances. It supports arbitrary types through default. It serializes subclasses of str, int, dict, list, dataclasses.dataclass, and enum.Enum. It does not serialize subclasses of tuple to avoid serializing namedtuple objects as arrays. To avoid serializing subclasses, specify the option orjson.OPT_PASSTHROUGH_SUBCLASS.

The output is a bytes object containing UTF-8.

The global interpreter lock (GIL) is held for the duration of the call.

It raises JSONEncodeError on an unsupported type. This exception message describes the invalid object with the error message Type is not JSON serializable: .... To fix this, specify default.

It raises JSONEncodeError on a str that contains invalid UTF-8.

It raises JSONEncodeError on an integer that exceeds 64 bits by default or, with OPT_STRICT_INTEGER, 53 bits.

It raises JSONEncodeError if a dict has a key of a type other than str, unless OPT_NON_STR_KEYS is specified.

It raises JSONEncodeError if the output of default recurses to handling by default more than 254 levels deep.

It raises JSONEncodeError on circular references.

It raises JSONEncodeError if a tzinfo on a datetime object is unsupported.

JSONEncodeError is a subclass of TypeError. This is for compatibility with the standard library.

default

To serialize a subclass or arbitrary types, specify default as a callable that returns a supported type. default may be a function, lambda, or callable class instance. To specify that a type was not handled by default, raise an exception such as TypeError.

>>> import orjson, decimal
>>>
def default(obj):
    if isinstance(obj, decimal.Decimal):
        return str(obj)
    raise TypeError

>>> orjson.dumps(decimal.Decimal("0.0842389659712649442845"))
JSONEncodeError: Type is not JSON serializable: decimal.Decimal
>>> orjson.dumps(decimal.Decimal("0.0842389659712649442845"), default=default)
b'"0.0842389659712649442845"'
>>> orjson.dumps({1, 2}, default=default)
orjson.JSONEncodeError: Type is not JSON serializable: set

The default callable may return an object that itself must be handled by default up to 254 times before an exception is raised.

It is important that default raise an exception if a type cannot be handled. Python otherwise implicitly returns None, which appears to the caller like a legitimate value and is serialized:

>>> import orjson, json, rapidjson
>>>
def default(obj):
    if isinstance(obj, decimal.Decimal):
        return str(obj)

>>> orjson.dumps({"set":{1, 2}}, default=default)
b'{"set":null}'
>>> json.dumps({"set":{1, 2}}, default=default)
'{"set":null}'
>>> rapidjson.dumps({"set":{1, 2}}, default=default)
'{"set":null}'

option

To modify how data is serialized, specify option. Each option is an integer constant in orjson. To specify multiple options, mask them together, e.g., option=orjson.OPT_STRICT_INTEGER | orjson.OPT_NAIVE_UTC.

OPT_APPEND_NEWLINE

Append \n to the output. This is a convenience and optimization for the pattern of dumps(...) + "\n". bytes objects are immutable and this pattern copies the original contents.

>>> import orjson
>>> orjson.dumps([])
b"[]"
>>> orjson.dumps([], option=orjson.OPT_APPEND_NEWLINE)
b"[]\n"
OPT_INDENT_2

Pretty-print output with an indent of two spaces. This is equivalent to indent=2 in the standard library. Pretty printing is slower and the output larger. orjson is the fastest compared library at pretty printing and has much less of a slowdown to pretty print than the standard library does. This option is compatible with all other options.

>>> import orjson
>>> orjson.dumps({"a": "b", "c": {"d": True}, "e": [1, 2]})
b'{"a":"b","c":{"d":true},"e":[1,2]}'
>>> orjson.dumps(
    {"a": "b", "c": {"d": True}, "e": [1, 2]},
    option=orjson.OPT_INDENT_2
)
b'{\n  "a": "b",\n  "c": {\n    "d": true\n  },\n  "e": [\n    1,\n    2\n  ]\n}'

If displayed, the indentation and linebreaks appear like this:

{
  "a": "b",
  "c": {
    "d": true
  },
  "e": [
    1,
    2
  ]
}

This measures serializing the github.json fixture as compact (52KiB) or pretty (64KiB):

Library compact (ms) pretty (ms) vs. orjson
orjson 0.06 0.07 1.0
ujson 0.18 0.19 2.8
rapidjson 0.22
simplejson 0.35 1.49 21.4
json 0.36 1.19 17.2

This measures serializing the citm_catalog.json fixture, more of a worst case due to the amount of nesting and newlines, as compact (489KiB) or pretty (1.1MiB):

Library compact (ms) pretty (ms) vs. orjson
orjson 0.88 1.73 1.0
ujson 3.73 4.52 2.6
rapidjson 3.54
simplejson 11.77 72.06 41.6
json 6.71 55.22 31.9

rapidjson is blank because it does not support pretty printing. This can be reproduced using the pyindent script.

OPT_NAIVE_UTC

Serialize datetime.datetime objects without a tzinfo as UTC. This has no effect on datetime.datetime objects that have tzinfo set.

>>> import orjson, datetime
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0),
    )
b'"1970-01-01T00:00:00"'
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0),
        option=orjson.OPT_NAIVE_UTC,
    )
b'"1970-01-01T00:00:00+00:00"'
OPT_NON_STR_KEYS

Serialize dict keys of type other than str. This allows dict keys to be one of str, int, float, bool, None, datetime.datetime, datetime.date, datetime.time, enum.Enum, and uuid.UUID. For comparison, the standard library serializes str, int, float, bool or None by default. orjson benchmarks as being faster at serializing non-str keys than other libraries. This option is slower for str keys than the default.

>>> import orjson, datetime, uuid
>>> orjson.dumps(
        {uuid.UUID("7202d115-7ff3-4c81-a7c1-2a1f067b1ece"): [1, 2, 3]},
        option=orjson.OPT_NON_STR_KEYS,
    )
b'{"7202d115-7ff3-4c81-a7c1-2a1f067b1ece":[1,2,3]}'
>>> orjson.dumps(
        {datetime.datetime(1970, 1, 1, 0, 0, 0): [1, 2, 3]},
        option=orjson.OPT_NON_STR_KEYS | orjson.OPT_NAIVE_UTC,
    )
b'{"1970-01-01T00:00:00+00:00":[1,2,3]}'

These types are generally serialized how they would be as values, e.g., datetime.datetime is still an RFC 3339 string and respects options affecting it. The exception is that int serialization does not respect OPT_STRICT_INTEGER.

This option has the risk of creating duplicate keys. This is because non-str objects may serialize to the same str as an existing key, e.g., {"1": true, 1: false}. The last key to be inserted to the dict will be serialized last and a JSON deserializer will presumably take the last occurrence of a key (in the above, false). The first value will be lost.

This option is compatible with orjson.OPT_SORT_KEYS. If sorting is used, note the sort is unstable and will be unpredictable for duplicate keys.

>>> import orjson, datetime
>>> orjson.dumps(
    {"other": 1, datetime.date(1970, 1, 5): 2, datetime.date(1970, 1, 3): 3},
    option=orjson.OPT_NON_STR_KEYS | orjson.OPT_SORT_KEYS
)
b'{"1970-01-03":3,"1970-01-05":2,"other":1}'

This measures serializing 589KiB of JSON comprising a list of 100 dict in which each dict has both 365 randomly-sorted int keys representing epoch timestamps as well as one str key and the value for each key is a single integer. In "str keys", the keys were converted to str before serialization, and orjson still specifes option=orjson.OPT_NON_STR_KEYS (which is always somewhat slower).

Library str keys (ms) int keys (ms) int keys sorted (ms)
orjson 1.53 2.16 4.29
ujson 3.07 5.65
rapidjson 4.29
simplejson 11.24 14.50 21.86
json 7.17 8.49

ujson is blank for sorting because it segfaults. json is blank because it raises TypeError on attempting to sort before converting all keys to str. rapidjson is blank because it does not support non-str keys. This can be reproduced using the pynonstr script.

OPT_OMIT_MICROSECONDS

Do not serialize the microsecond field on datetime.datetime and datetime.time instances.

>>> import orjson, datetime
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0, 1),
    )
b'"1970-01-01T00:00:00.000001"'
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0, 1),
        option=orjson.OPT_OMIT_MICROSECONDS,
    )
b'"1970-01-01T00:00:00"'
OPT_PASSTHROUGH_DATACLASS

Passthrough dataclasses.dataclass instances to default. This allows customizing their output but is much slower.

>>> import orjson, dataclasses
>>>
@dataclasses.dataclass
class User:
    id: str
    name: str
    password: str

def default(obj):
    if isinstance(obj, User):
        return {"id": obj.id, "name": obj.name}
    raise TypeError

>>> orjson.dumps(User("3b1", "asd", "zxc"))
b'{"id":"3b1","name":"asd","password":"zxc"}'
>>> orjson.dumps(User("3b1", "asd", "zxc"), option=orjson.OPT_PASSTHROUGH_DATACLASS)
TypeError: Type is not JSON serializable: User
>>> orjson.dumps(
        User("3b1", "asd", "zxc"),
        option=orjson.OPT_PASSTHROUGH_DATACLASS,
        default=default,
    )
b'{"id":"3b1","name":"asd"}'
OPT_PASSTHROUGH_DATETIME

Passthrough datetime.datetime, datetime.date, and datetime.time instances to default. This allows serializing datetimes to a custom format, e.g., HTTP dates:

>>> import orjson, datetime
>>>
def default(obj):
    if isinstance(obj, datetime.datetime):
        return obj.strftime("%a, %d %b %Y %H:%M:%S GMT")
    raise TypeError

>>> orjson.dumps({"created_at": datetime.datetime(1970, 1, 1)})
b'{"created_at":"1970-01-01T00:00:00"}'
>>> orjson.dumps({"created_at": datetime.datetime(1970, 1, 1)}, option=orjson.OPT_PASSTHROUGH_DATETIME)
TypeError: Type is not JSON serializable: datetime.datetime
>>> orjson.dumps(
        {"created_at": datetime.datetime(1970, 1, 1)},
        option=orjson.OPT_PASSTHROUGH_DATETIME,
        default=default,
    )
b'{"created_at":"Thu, 01 Jan 1970 00:00:00 GMT"}'

This does not affect datetimes in dict keys if using OPT_NON_STR_KEYS.

OPT_PASSTHROUGH_SUBCLASS

Passthrough subclasses of builtin types to default.

>>> import orjson
>>>
class Secret(str):
    pass

def default(obj):
    if isinstance(obj, Secret):
        return "******"
    raise TypeError

>>> orjson.dumps(Secret("zxc"))
b'"zxc"'
>>> orjson.dumps(Secret("zxc"), option=orjson.OPT_PASSTHROUGH_SUBCLASS)
TypeError: Type is not JSON serializable: Secret
>>> orjson.dumps(Secret("zxc"), option=orjson.OPT_PASSTHROUGH_SUBCLASS, default=default)
b'"******"'

This does not affect serializing subclasses as dict keys if using OPT_NON_STR_KEYS.

OPT_SERIALIZE_DATACLASS

This is deprecated and has no effect in version 3. In version 2 this was required to serialize dataclasses.dataclass instances. For more, see dataclass.

OPT_SERIALIZE_NUMPY

Serialize numpy.ndarray instances. For more, see numpy.

OPT_SERIALIZE_UUID

This is deprecated and has no effect in version 3. In version 2 this was required to serialize uuid.UUID instances. For more, see UUID.

OPT_SORT_KEYS

Serialize dict keys in sorted order. The default is to serialize in an unspecified order. This is equivalent to sort_keys=True in the standard library.

This can be used to ensure the order is deterministic for hashing or tests. It has a substantial performance penalty and is not recommended in general.

>>> import orjson
>>> orjson.dumps({"b": 1, "c": 2, "a": 3})
b'{"b":1,"c":2,"a":3}'
>>> orjson.dumps({"b": 1, "c": 2, "a": 3}, option=orjson.OPT_SORT_KEYS)
b'{"a":3,"b":1,"c":2}'

This measures serializing the twitter.json fixture unsorted and sorted:

Library unsorted (ms) sorted (ms) vs. orjson
orjson 0.5 0.92 1
ujson 1.61 2.48 2.7
rapidjson 2.17 2.89 3.2
simplejson 3.56 5.13 5.6
json 3.59 4.59 5

The benchmark can be reproduced using the pysort script.

The sorting is not collation/locale-aware:

>>> import orjson
>>> orjson.dumps({"a": 1, "ä": 2, "A": 3}, option=orjson.OPT_SORT_KEYS)
b'{"A":3,"a":1,"\xc3\xa4":2}'

This is the same sorting behavior as the standard library, rapidjson, simplejson, and ujson.

dataclass also serialize as maps but this has no effect on them.

OPT_STRICT_INTEGER

Enforce 53-bit limit on integers. The limit is otherwise 64 bits, the same as the Python standard library. For more, see int.

OPT_UTC_Z

Serialize a UTC timezone on datetime.datetime instances as Z instead of +00:00.

>>> import orjson, datetime
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=datetime.timezone.utc),
    )
b'"1970-01-01T00:00:00+00:00"'
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=datetime.timezone.utc),
        option=orjson.OPT_UTC_Z
    )
b'"1970-01-01T00:00:00Z"'

Deserialize

def loads(__obj: Union[bytes, bytearray, memoryview, str]) -> Any: ...

loads() deserializes JSON to Python objects. It deserializes to dict, list, int, float, str, bool, and None objects.

bytes, bytearray, memoryview, and str input are accepted. If the input exists as a memoryview, bytearray, or bytes object, it is recommended to pass these directly rather than creating an unnecessary str object. This has lower memory usage and lower latency.

The input must be valid UTF-8.

orjson maintains a cache of map keys for the duration of the process. This causes a net reduction in memory usage by avoiding duplicate strings. The keys must be at most 64 bytes to be cached and 512 entries are stored.

The global interpreter lock (GIL) is held for the duration of the call.

It raises JSONDecodeError if given an invalid type or invalid JSON. This includes if the input contains NaN, Infinity, or -Infinity, which the standard library allows, but is not valid JSON.

JSONDecodeError is a subclass of json.JSONDecodeError and ValueError. This is for compatibility with the standard library.

Types

dataclass

orjson serializes instances of dataclasses.dataclass natively. It serializes instances 40-50x as fast as other libraries and avoids a severe slowdown seen in other libraries compared to serializing dict.

It is supported to pass all variants of dataclasses, including dataclasses using __slots__, frozen dataclasses, those with optional or default attributes, and subclasses. There is a performance benefit to not using __slots__.

Library dict (ms) dataclass (ms) vs. orjson
orjson 1.40 1.60 1
ujson
rapidjson 3.64 68.48 42
simplejson 14.21 92.18 57
json 13.28 94.90 59

This measures serializing 555KiB of JSON, orjson natively and other libraries using default to serialize the output of dataclasses.asdict(). This can be reproduced using the pydataclass script.

Dataclasses are serialized as maps, with every attribute serialized and in the order given on class definition:

>>> import dataclasses, orjson, typing

@dataclasses.dataclass
class Member:
    id: int
    active: bool = dataclasses.field(default=False)

@dataclasses.dataclass
class Object:
    id: int
    name: str
    members: typing.List[Member]

>>> orjson.dumps(Object(1, "a", [Member(1, True), Member(2)]))
b'{"id":1,"name":"a","members":[{"id":1,"active":true},{"id":2,"active":false}]}'

Users may wish to control how dataclass instances are serialized, e.g., to not serialize an attribute or to change the name of an attribute when serialized. orjson may implement support using the metadata mapping on field attributes, e.g., field(metadata={"json_serialize": False}), if use cases are clear.

datetime

orjson serializes datetime.datetime objects to RFC 3339 format, e.g., "1970-01-01T00:00:00+00:00". This is a subset of ISO 8601 and compatible with isoformat() in the standard library.

>>> import orjson, datetime, zoneinfo
>>> orjson.dumps(
    datetime.datetime(2018, 12, 1, 2, 3, 4, 9, tzinfo=zoneinfo.ZoneInfo('Australia/Adelaide'))
)
b'"2018-12-01T02:03:04.000009+10:30"'
>>> orjson.dumps(
    datetime.datetime.fromtimestamp(4123518902).replace(tzinfo=datetime.timezone.utc)
)
b'"2100-09-01T21:55:02+00:00"'
>>> orjson.dumps(
    datetime.datetime.fromtimestamp(4123518902)
)
b'"2100-09-01T21:55:02"'

datetime.datetime supports instances with a tzinfo that is None, datetime.timezone.utc, a timezone instance from the python3.9+ zoneinfo module, or a timezone instance from the third-party pendulum, pytz, or dateutil/arrow libraries.

datetime.time objects must not have a tzinfo.

>>> import orjson, datetime
>>> orjson.dumps(datetime.time(12, 0, 15, 290))
b'"12:00:15.000290"'

datetime.date objects will always serialize.

>>> import orjson, datetime
>>> orjson.dumps(datetime.date(1900, 1, 2))
b'"1900-01-02"'

Errors with tzinfo result in JSONEncodeError being raised.

It is faster to have orjson serialize datetime objects than to do so before calling dumps(). If using an unsupported type such as pendulum.datetime, use default.

To disable serialization of datetime objects specify the option orjson.OPT_PASSTHROUGH_DATETIME.

To use "Z" suffix instead of "+00:00" to indicate UTC ("Zulu") time, use the option orjson.OPT_UTC_Z.

To assume datetimes without timezone are UTC, se the option orjson.OPT_NAIVE_UTC.

enum

orjson serializes enums natively. Options apply to their values.

>>> import enum, datetime, orjson
>>>
class DatetimeEnum(enum.Enum):
    EPOCH = datetime.datetime(1970, 1, 1, 0, 0, 0)
>>> orjson.dumps(DatetimeEnum.EPOCH)
b'"1970-01-01T00:00:00"'
>>> orjson.dumps(DatetimeEnum.EPOCH, option=orjson.OPT_NAIVE_UTC)
b'"1970-01-01T00:00:00+00:00"'

Enums with members that are not supported types can be serialized using default:

>>> import enum, orjson
>>>
class Custom:
    def __init__(self, val):
        self.val = val

def default(obj):
    if isinstance(obj, Custom):
        return obj.val
    raise TypeError

class CustomEnum(enum.Enum):
    ONE = Custom(1)

>>> orjson.dumps(CustomEnum.ONE, default=default)
b'1'

float

orjson serializes and deserializes double precision floats with no loss of precision and consistent rounding. The same behavior is observed in rapidjson, simplejson, and json. ujson 1.35 was inaccurate in both serialization and deserialization, i.e., it modifies the data, and the recent 2.0 release is accurate.

orjson.dumps() serializes Nan, Infinity, and -Infinity, which are not compliant JSON, as null:

>>> import orjson, ujson, rapidjson, json
>>> orjson.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
b'[null,null,null]'
>>> ujson.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
OverflowError: Invalid Inf value when encoding double
>>> rapidjson.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
'[NaN,Infinity,-Infinity]'
>>> json.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
'[NaN, Infinity, -Infinity]'

int

orjson serializes and deserializes 64-bit integers by default. The range supported is a signed 64-bit integer's minimum (-9223372036854775807) to an unsigned 64-bit integer's maximum (18446744073709551615). This is widely compatible, but there are implementations that only support 53-bits for integers, e.g., web browsers. For those implementations, dumps() can be configured to raise a JSONEncodeError on values exceeding the 53-bit range.

>>> import orjson
>>> orjson.dumps(9007199254740992)
b'9007199254740992'
>>> orjson.dumps(9007199254740992, option=orjson.OPT_STRICT_INTEGER)
JSONEncodeError: Integer exceeds 53-bit range
>>> orjson.dumps(-9007199254740992, option=orjson.OPT_STRICT_INTEGER)
JSONEncodeError: Integer exceeds 53-bit range

numpy

orjson natively serializes numpy.ndarray and individual numpy.float64, numpy.float32, numpy.int64, numpy.int32, numpy.int8, numpy.uint64, numpy.uint32, numpy.uint8, numpy.uintp, or numpy.intp, and numpy.datetime64 instances.

orjson is faster than all compared libraries at serializing numpy instances. Serializing numpy data requires specifying option=orjson.OPT_SERIALIZE_NUMPY.

>>> import orjson, numpy
>>> orjson.dumps(
        numpy.array([[1, 2, 3], [4, 5, 6]]),
        option=orjson.OPT_SERIALIZE_NUMPY,
)
b'[[1,2,3],[4,5,6]]'

The array must be a contiguous C array (C_CONTIGUOUS) and one of the supported datatypes.

numpy.datetime64 instances are serialized as RFC 3339 strings and datetime options affect them.

>>> import orjson, numpy
>>> orjson.dumps(
        numpy.datetime64("2021-01-01T00:00:00.172"),
        option=orjson.OPT_SERIALIZE_NUMPY,
)
b'"2021-01-01T00:00:00.172000"'
>>> orjson.dumps(
        numpy.datetime64("2021-01-01T00:00:00.172"),
        option=(
            orjson.OPT_SERIALIZE_NUMPY |
            orjson.OPT_NAIVE_UTC |
            orjson.OPT_OMIT_MICROSECONDS
        ),
)
b'"2021-01-01T00:00:00+00:00"'

If an array is not a contiguous C array, contains an supported datatype, or contains a numpy.datetime64 using an unsupported representation (e.g., picoseconds), orjson falls through to default. In default, obj.tolist() can be specified. If an array is malformed, which is not expected, orjson.JSONEncodeError is raised.

This measures serializing 92MiB of JSON from an numpy.ndarray with dimensions of (50000, 100) and numpy.float64 values:

Library Latency (ms) RSS diff (MiB) vs. orjson
orjson 194 99 1.0
ujson
rapidjson 3,048 309 15.7
simplejson 3,023 297 15.6
json 3,133 297 16.1

This measures serializing 100MiB of JSON from an numpy.ndarray with dimensions of (100000, 100) and numpy.int32 values:

Library Latency (ms) RSS diff (MiB) vs. orjson
orjson 178 115 1.0
ujson
rapidjson 1,512 551 8.5
simplejson 1,606 504 9.0
json 1,506 503 8.4

This measures serializing 105MiB of JSON from an numpy.ndarray with dimensions of (100000, 200) and numpy.bool values:

Library Latency (ms) RSS diff (MiB) vs. orjson
orjson 157 120 1.0
ujson
rapidjson 710 327 4.5
simplejson 931 398 5.9
json 996 400 6.3

In these benchmarks, orjson serializes natively, ujson is blank because it does not support a default parameter, and the other libraries serialize ndarray.tolist() via default. The RSS column measures peak memory usage during serialization. This can be reproduced using the pynumpy script.

orjson does not have an installation or compilation dependency on numpy. The implementation is independent, reading numpy.ndarray using PyArrayInterface.

str

orjson is strict about UTF-8 conformance. This is stricter than the standard library's json module, which will serialize and deserialize UTF-16 surrogates, e.g., "\ud800", that are invalid UTF-8.

If orjson.dumps() is given a str that does not contain valid UTF-8, orjson.JSONEncodeError is raised. If loads() receives invalid UTF-8, orjson.JSONDecodeError is raised.

orjson and rapidjson are the only compared JSON libraries to consistently error on bad input.

>>> import orjson, ujson, rapidjson, json
>>> orjson.dumps('\ud800')
JSONEncodeError: str is not valid UTF-8: surrogates not allowed
>>> ujson.dumps('\ud800')
UnicodeEncodeError: 'utf-8' codec ...
>>> rapidjson.dumps('\ud800')
UnicodeEncodeError: 'utf-8' codec ...
>>> json.dumps('\ud800')
'"\\ud800"'
>>> orjson.loads('"\\ud800"')
JSONDecodeError: unexpected end of hex escape at line 1 column 8: line 1 column 1 (char 0)
>>> ujson.loads('"\\ud800"')
''
>>> rapidjson.loads('"\\ud800"')
ValueError: Parse error at offset 1: The surrogate pair in string is invalid.
>>> json.loads('"\\ud800"')
'\ud800'

To make a best effort at deserializing bad input, first decode bytes using the replace or lossy argument for errors:

>>> import orjson
>>> orjson.loads(b'"\xed\xa0\x80"')
JSONDecodeError: str is not valid UTF-8: surrogates not allowed
>>> orjson.loads(b'"\xed\xa0\x80"'.decode("utf-8", "replace"))
'���'

uuid

orjson serializes uuid.UUID instances to RFC 4122 format, e.g., "f81d4fae-7dec-11d0-a765-00a0c91e6bf6".

>>> import orjson, uuid
>>> orjson.dumps(uuid.UUID('f81d4fae-7dec-11d0-a765-00a0c91e6bf6'))
b'"f81d4fae-7dec-11d0-a765-00a0c91e6bf6"'
>>> orjson.dumps(uuid.uuid5(uuid.NAMESPACE_DNS, "python.org"))
b'"886313e1-3b8a-5372-9b90-0c9aee199e5d"'

Testing

The library has comprehensive tests. There are tests against fixtures in the JSONTestSuite and nativejson-benchmark repositories. It is tested to not crash against the Big List of Naughty Strings. It is tested to not leak memory. It is tested to not crash against and not accept invalid UTF-8. There are integration tests exercising the library's use in web servers (gunicorn using multiprocess/forked workers) and when multithreaded. It also uses some tests from the ultrajson library.

orjson is the most correct of the compared libraries. This graph shows how each library handles a combined 342 JSON fixtures from the JSONTestSuite and nativejson-benchmark tests:

Library Invalid JSON documents not rejected Valid JSON documents not deserialized
orjson 0 0
ujson 38 0
rapidjson 6 0
simplejson 13 0
json 17 0

This shows that all libraries deserialize valid JSON but only orjson correctly rejects the given invalid JSON fixtures. Errors are largely due to accepting invalid strings and numbers.

The graph above can be reproduced using the pycorrectness script.

Performance

Serialization and deserialization performance of orjson is better than ultrajson, rapidjson, simplejson, or json. The benchmarks are done on fixtures of real data:

  • twitter.json, 631.5KiB, results of a search on Twitter for "一", containing CJK strings, dictionaries of strings and arrays of dictionaries, indented.

  • github.json, 55.8KiB, a GitHub activity feed, containing dictionaries of strings and arrays of dictionaries, not indented.

  • citm_catalog.json, 1.7MiB, concert data, containing nested dictionaries of strings and arrays of integers, indented.

  • canada.json, 2.2MiB, coordinates of the Canadian border in GeoJSON format, containing floats and arrays, indented.

Latency

alt text alt text alt text alt text alt text alt text alt text alt text

twitter.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.59 1698.8 1
ujson 2.14 464.3 3.64
rapidjson 2.39 418.5 4.06
simplejson 3.15 316.9 5.36
json 3.56 281.2 6.06

twitter.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 2.28 439.3 1
ujson 2.89 345.9 1.27
rapidjson 3.85 259.6 1.69
simplejson 3.66 272.1 1.61
json 4.05 246.7 1.78

github.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.07 15265.2 1
ujson 0.22 4556.7 3.35
rapidjson 0.26 3808.9 4.02
simplejson 0.37 2690.4 5.68
json 0.35 2847.8 5.36

github.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.18 5610.1 1
ujson 0.28 3540.7 1.58
rapidjson 0.33 3031.5 1.85
simplejson 0.29 3385.6 1.65
json 0.29 3402.1 1.65

citm_catalog.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.99 1008.5 1
ujson 3.69 270.7 3.72
rapidjson 3.55 281.4 3.58
simplejson 11.76 85.1 11.85
json 6.89 145.1 6.95

citm_catalog.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 4.53 220.5 1
ujson 5.67 176.5 1.25
rapidjson 7.51 133.3 1.66
simplejson 7.54 132.7 1.66
json 7.8 128.2 1.72

canada.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 4.72 198.9 1
ujson 17.76 56.3 3.77
rapidjson 61.83 16.2 13.11
simplejson 80.6 12.4 17.09
json 52.38 18.8 11.11

canada.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 10.28 97.4 1
ujson 16.49 60.5 1.6
rapidjson 37.92 26.4 3.69
simplejson 37.7 26.5 3.67
json 37.87 27.6 3.68

Memory

orjson's memory usage when deserializing is similar to or lower than the standard library and other third-party libraries.

This measures, in the first column, RSS after importing a library and reading the fixture, and in the second column, increases in RSS after repeatedly calling loads() on the fixture.

twitter.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 13.5 2.5
ujson 14 4.1
rapidjson 14.7 6.5
simplejson 13.2 2.5
json 12.9 2.3

github.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 13.1 0.3
ujson 13.5 0.3
rapidjson 14 0.7
simplejson 12.6 0.3
json 12.3 0.1

citm_catalog.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 14.6 7.9
ujson 15.1 11.1
rapidjson 15.8 36
simplejson 14.3 27.4
json 14 27.2

canada.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 17.1 15.7
ujson 17.6 17.4
rapidjson 18.3 17.9
simplejson 16.9 19.6
json 16.5 19.4

Reproducing

The above was measured using Python 3.8.3 on Linux (x86_64) with orjson 3.3.0, ujson 3.0.0, python-rapidson 0.9.1, and simplejson 3.17.2.

The latency results can be reproduced using the pybench and graph scripts. The memory results can be reproduced using the pymem script.

Questions

Why can't I install it from PyPI?

Probably pip needs to be upgraded. pip added support for manylinux2014 in 2019.

Will it deserialize to dataclasses, UUIDs, decimals, etc or support object_hook?

No. This requires a schema specifying what types are expected and how to handle errors etc. This is addressed by data validation libraries a level above this.

Will it serialize to str?

No. bytes is the correct type for a serialized blob.

Will it support PyPy?

If someone implements it well.

Packaging

To package orjson requires Rust on the nightly channel and the maturin build tool. maturin can be installed from PyPI or packaged as well. This is the simplest and recommended way of installing from source, assuming rustup is available from a package manager:

rustup default nightly
pip wheel --no-binary=orjson orjson

This is an example of building a wheel using the repository as source, rustup installed from upstream, and a pinned version of Rust:

pip install maturin
curl https://sh.rustup.rs -sSf | sh -s -- --default-toolchain nightly-2021-06-24 --profile minimal -y
maturin build --no-sdist --release --strip --manylinux off
ls -1 target/wheels

Problems with the Rust nightly channel may require pinning a version. nightly-2021-06-24 is known to be ok.

orjson is tested for amd64 and aarch64 on Linux, macOS, and Windows. It may not work on 32-bit targets. It has recommended RUSTFLAGS specified in .cargo/config so it is recommended to either not set RUSTFLAGS or include these options.

There are no runtime dependencies other than libc.

orjson's tests are included in the source distribution on PyPI. It is necessarily to install dependencies from PyPI specified in test/requirements.txt. These require a C compiler. The tests do not make network requests.

The tests should be run as part of the build. It can be run like this:

pip install -r test/requirements.txt
pytest -q test

License

orjson was written by ijl <ijl@mailbox.org>, copyright 2018 - 2021, licensed under both the Apache 2 and MIT licenses.

Project details


Release history Release notifications | RSS feed

This version

3.6.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

orjson-3.6.0.tar.gz (746.7 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

orjson-3.6.0-cp310-cp310-manylinux_2_24_x86_64.whl (236.0 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.24+ x86-64

orjson-3.6.0-cp310-cp310-manylinux_2_24_aarch64.whl (218.6 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.24+ ARM64

orjson-3.6.0-cp39-none-win_amd64.whl (186.2 kB view details)

Uploaded CPython 3.9Windows x86-64

orjson-3.6.0-cp39-cp39-manylinux_2_24_x86_64.whl (235.9 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.24+ x86-64

orjson-3.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (236.1 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

orjson-3.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (218.7 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

orjson-3.6.0-cp39-cp39-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (436.1 kB view details)

Uploaded CPython 3.9macOS 10.9+ universal2 (ARM64, x86-64)macOS 10.9+ x86-64macOS 11.0+ ARM64

orjson-3.6.0-cp39-cp39-macosx_10_7_x86_64.whl (232.3 kB view details)

Uploaded CPython 3.9macOS 10.7+ x86-64

orjson-3.6.0-cp38-none-win_amd64.whl (186.2 kB view details)

Uploaded CPython 3.8Windows x86-64

orjson-3.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (236.1 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

orjson-3.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (218.7 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

orjson-3.6.0-cp38-cp38-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (436.1 kB view details)

Uploaded CPython 3.8macOS 10.9+ universal2 (ARM64, x86-64)macOS 10.9+ x86-64macOS 11.0+ ARM64

orjson-3.6.0-cp38-cp38-macosx_10_7_x86_64.whl (232.3 kB view details)

Uploaded CPython 3.8macOS 10.7+ x86-64

orjson-3.6.0-cp37-none-win_amd64.whl (186.2 kB view details)

Uploaded CPython 3.7Windows x86-64

orjson-3.6.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (236.2 kB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

orjson-3.6.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (218.8 kB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ ARM64

orjson-3.6.0-cp37-cp37m-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (436.2 kB view details)

Uploaded CPython 3.7mmacOS 10.9+ universal2 (ARM64, x86-64)macOS 10.9+ x86-64macOS 11.0+ ARM64

orjson-3.6.0-cp37-cp37m-macosx_10_7_x86_64.whl (232.3 kB view details)

Uploaded CPython 3.7mmacOS 10.7+ x86-64

orjson-3.6.0-cp36-none-win_amd64.whl (186.2 kB view details)

Uploaded CPython 3.6Windows x86-64

orjson-3.6.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (236.2 kB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.17+ x86-64

orjson-3.6.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (218.8 kB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.17+ ARM64

orjson-3.6.0-cp36-cp36m-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (436.2 kB view details)

Uploaded CPython 3.6mmacOS 10.9+ universal2 (ARM64, x86-64)macOS 10.9+ x86-64macOS 11.0+ ARM64

orjson-3.6.0-cp36-cp36m-macosx_10_7_x86_64.whl (232.3 kB view details)

Uploaded CPython 3.6mmacOS 10.7+ x86-64

File details

Details for the file orjson-3.6.0.tar.gz.

File metadata

  • Download URL: orjson-3.6.0.tar.gz
  • Upload date:
  • Size: 746.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.10.6

File hashes

Hashes for orjson-3.6.0.tar.gz
Algorithm Hash digest
SHA256 367bf36a5f9c461c4f8f5f679ac6a36d31fa73aa11bf8ea82d3ceec3121a2abe
MD5 3461da9f66126833e38597f688884a84
BLAKE2b-256 f0090d284129fd64026d3cedb704d3ffb31b692895dce118951e6fa7bfd4ae2c

See more details on using hashes here.

File details

Details for the file orjson-3.6.0-cp310-cp310-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.6.0-cp310-cp310-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 baf8e883b88ada0825a6d5f0c23e356f0f0188d0737664a5767feec82b40576b
MD5 ddc0ccd3bbe29e225b1d0f8b412d1a0f
BLAKE2b-256 b0b45d0f68ffde2fd7d4458227ab9fdfbe962187b7651110b02aa38d5bebc243

See more details on using hashes here.

File details

Details for the file orjson-3.6.0-cp310-cp310-manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for orjson-3.6.0-cp310-cp310-manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 53ef160ac1b27d0417005e865ec1478044db4289b25beadff2ab4ce2c74a0f22
MD5 2f3d80c2e2bad75b6d3a1fcc94ba8a3e
BLAKE2b-256 1ec0703ff1690ae9d796596792f0b0996f1b28181d7d4f8bfab94d8c3e4fdd3c

See more details on using hashes here.

File details

Details for the file orjson-3.6.0-cp39-none-win_amd64.whl.

File metadata

  • Download URL: orjson-3.6.0-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 186.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.10.6

File hashes

Hashes for orjson-3.6.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 8538e18d07f12b534a289fcac0ccab443e0b2ade7069fc702ef96375ad44a0cb
MD5 2fab057888fe47303cd9b46936a6a969
BLAKE2b-256 df0abc9888adea0ef53807ddce96e8f15f9479569c725afadb672c4244ae8220

See more details on using hashes here.

File details

Details for the file orjson-3.6.0-cp39-cp39-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.6.0-cp39-cp39-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 6313c294059dbc0dffc629baf1c5144bdc407c9705c9f47e779fa97e65f846c0
MD5 08460ac06435bdf8eb0c08cf74fd4338
BLAKE2b-256 f5b64e8a9c63c0455bb5422fea458dacac0ed241a307abad3a38d673947e61e8

See more details on using hashes here.

File details

Details for the file orjson-3.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1064ec32586c90e2191d2b917479686cfb0a6be352f2fc4d07ad2481c2186849
MD5 183ca84117369686a32a3fa15fb0e5ef
BLAKE2b-256 c7466232e68a92da2424e81dca4a5c25a409cd9eb0eec9224a3db5688b444f84

See more details on using hashes here.

File details

Details for the file orjson-3.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for orjson-3.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2ffca90b561290d7d3ce87ac91d2da970b590bd01b00617e601e4e420d29a51f
MD5 e2f19c4beecaa7749c032bf8f94d0a3f
BLAKE2b-256 9c1f8167333ef08019254779fb16b7a9620b7019f90508ac6137985669e4d181

See more details on using hashes here.

File details

Details for the file orjson-3.6.0-cp39-cp39-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for orjson-3.6.0-cp39-cp39-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e59ffe5442ce523b785df54b8bcb2aead0779e2d78d4dc3a3d3a8ecfbc6e3afb
MD5 b2d9ccbc8a161fe7b1649ddc4a57fc5b
BLAKE2b-256 5732f5a39d5ebedfdb66a7c210edf2284d88368bd8b55e93ab6c3b7d05be7c88

See more details on using hashes here.

File details

Details for the file orjson-3.6.0-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.6.0-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 d61334b8a3d0a6f4e70fab887d504d75f89014d731e7a5edc57ef00bbb27b5fc
MD5 03deb477d2058ce43a0f105fcc6d3287
BLAKE2b-256 041eab5d4f2816a0d5882479cb19fe80eb82f03f9a518385866c1fd2ae5f67e6

See more details on using hashes here.

File details

Details for the file orjson-3.6.0-cp38-none-win_amd64.whl.

File metadata

  • Download URL: orjson-3.6.0-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 186.2 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.10.6

File hashes

Hashes for orjson-3.6.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 eb226b0fbf5a39d359ac1cc78a3869ff8c24cdb4e766e5b2d50ee89d47042eb1
MD5 7e7aac0795f0b19621d49908db96ba84
BLAKE2b-256 437ea58d92b13749a1c17b3c0f05ee7dcae3251f046a4b192e9be1aa2457d98c

See more details on using hashes here.

File details

Details for the file orjson-3.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 55816d7f553f8d30a4584299a114d15821ee475586f59726e53666e031f24fc9
MD5 730675775392553bca646a2999dd9d97
BLAKE2b-256 5fa62d938f3c45b541cc746064fd12af970ee020d4f560da88ff2fad2a608953

See more details on using hashes here.

File details

Details for the file orjson-3.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for orjson-3.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e23f46b58f51e14efd18bb570f3fb07cbf2de0c71189bcf4c52f9c212eb54ac7
MD5 6eb6efc280221382d19d2cbcb6fb67d4
BLAKE2b-256 fea0f9314b88fa9f50ef4115c873680bce5e51731a9077f80f7a74ba0b768407

See more details on using hashes here.

File details

Details for the file orjson-3.6.0-cp38-cp38-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for orjson-3.6.0-cp38-cp38-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 dd3e0e841d699290b28bf452e099c1d77f3571a059ef0e61622bd18cef1b86ad
MD5 d28cb4c095c56b1c71fbb07b47261c42
BLAKE2b-256 c6385a5ff6295eafe864f71e018e63549294b791ebffe8dd759ca363776b282f

See more details on using hashes here.

File details

Details for the file orjson-3.6.0-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.6.0-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 a83c2aacb3a5bc08ee6289ac5fb07eae7d5232e2c6e492dbf20289ba78475dd2
MD5 10a3ec4c85531beafa56e6e38304e243
BLAKE2b-256 0ab46b3e112d6fb6560c10882373434161b11abe12748c7bf8f5eeece5a96561

See more details on using hashes here.

File details

Details for the file orjson-3.6.0-cp37-none-win_amd64.whl.

File metadata

  • Download URL: orjson-3.6.0-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 186.2 kB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.10.6

File hashes

Hashes for orjson-3.6.0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 0d1a4b5b796ad55f2b87e6177e833e972a4da5804765fc45a11be40421768589
MD5 04f5619c46cdb4649b570284fc1346f4
BLAKE2b-256 527408cd25058d7286c1faf6b5f112956b3fe430b67a45680e31608b49dfdf49

See more details on using hashes here.

File details

Details for the file orjson-3.6.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.6.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f71c05553a0a3e5d32574bc4edcdd31dfbdcf981ad980988d0488a1e5a368451
MD5 bb4b7e14ced9b789f1abb8fa1b5a00d6
BLAKE2b-256 9a511c2c06bf672a36d281de0bef207cfb11437251e86eb09f5dd938ef4cc929

See more details on using hashes here.

File details

Details for the file orjson-3.6.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for orjson-3.6.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 63314d2f0602cdb570c548b19f94f7a158bdb8a10359eb707a40d19e577edc81
MD5 da6f0469812c6bf0578daf09a312af25
BLAKE2b-256 b897be5217f47645329563a18157309554e27a901a41b532b133673c92fec552

See more details on using hashes here.

File details

Details for the file orjson-3.6.0-cp37-cp37m-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for orjson-3.6.0-cp37-cp37m-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 aca079cab25f7d2001af309a661e66473e4610dbb77ccbc245c05669dc03f639
MD5 5a5b77651d3b525c00a2f4d7027dc715
BLAKE2b-256 828b7423c2a854de52aaf1fd4a5d0f38660f1a7e763bf4e48d2f6744c277ec6a

See more details on using hashes here.

File details

Details for the file orjson-3.6.0-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.6.0-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 7eff58fa9e4fdf08034017ae5ec8ff90396502fd9f9d28ee2481dd4c6132a40d
MD5 4134448591cf644fa5860465102cb772
BLAKE2b-256 63304508fa37d653b434c376c2f0da21ddad664fa8a4ccc50d2ed09afeda68aa

See more details on using hashes here.

File details

Details for the file orjson-3.6.0-cp36-none-win_amd64.whl.

File metadata

  • Download URL: orjson-3.6.0-cp36-none-win_amd64.whl
  • Upload date:
  • Size: 186.2 kB
  • Tags: CPython 3.6, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.10.6

File hashes

Hashes for orjson-3.6.0-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 922c9d3d7438ee14f103511cc005c1e470dbc01e42b22d8754e6477cebd02959
MD5 65c5561c3d5b4bf64a4a9c29f56d6d70
BLAKE2b-256 954e896c7171e8e6fd1e8d62b370848e680be15741b84c0ff43ba0643f9e329e

See more details on using hashes here.

File details

Details for the file orjson-3.6.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.6.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e06746591c3ed0549bc6860cb537e39cf14009f5fe31a1becc3b3cf2abc5f202
MD5 2eea4a880e76876e467560ba2c13c623
BLAKE2b-256 4a4609eb28527535f1554d1dae503dbec918575a3cfb7220dd2a7aa13f71349a

See more details on using hashes here.

File details

Details for the file orjson-3.6.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for orjson-3.6.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8becded36abd1363b604b4decae77c54b79086f397b7ceec134627119aac4214
MD5 35708087e6b5fac8055c4f43b68148cb
BLAKE2b-256 125bb92393f26fd98596b9c0bca2a9dc134bcf2ddc59089abd6fa2cab4be521a

See more details on using hashes here.

File details

Details for the file orjson-3.6.0-cp36-cp36m-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for orjson-3.6.0-cp36-cp36m-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 a58559c684f1b1ead7b2dd6ec95645f1fa5bd98a784b20d0e83a4be95dbc956f
MD5 b7648e3a116ec05772a51c381ac65819
BLAKE2b-256 a4102fe2202edaf966e0d660b40f679f186210df3ddb37c61fbd4fc3a36c38e2

See more details on using hashes here.

File details

Details for the file orjson-3.6.0-cp36-cp36m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for orjson-3.6.0-cp36-cp36m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 d02cc480dfabc941b3ad6af333ea579dc5606646d808e1fed9010d1960c29d65
MD5 01279063131621c68df3d0d357bb706f
BLAKE2b-256 574e40da276c9b16ac59a39a7680ed4b2f29984e1785929fb57b3098c70b7bbc

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page