Skip to main content

Pythonic interface to ANSYS binary files

Project description

https://img.shields.io/pypi/v/pyansys.svg https://dev.azure.com/femorph/pyansys/_apis/build/status/akaszynski.pyansys?branchName=master
This Python module allows you to:
  • Interactively control an instance of ANSYS v14.5 + using Python on Linux, >=17.0 on Windows.

  • Extract data directly from binary ANSYS v14.5+ files and to display or animate them.

  • Rapidly read in binary result (.rst), binary mass and stiffness (.full), and ASCII block archive (.cdb) files.

See the Documentation page for more details.

Installation

Installation through pip:

pip install pyansys

You can also visit GitHub to download the source.

Quick Examples

Many of the following examples are built in and can be run from the build-in examples module. For a quick demo, run:

from pyansys import examples
examples.run_all()

Controlling ANSYS

Create an instance of ANSYS and interactively send commands to it. This is a direct interface and does not rely on writing a temporary script file. You can also generate plots using matplotlib.

import os
import pyansys

path = os.getcwd()
mapdl = pyansys.launch_mapdl(run_location=path, interactive_plotting=True)

# create a square area using keypoints
mapdl.prep7()
mapdl.k(1, 0, 0, 0)
mapdl.k(2, 1, 0, 0)
mapdl.k(3, 1, 1, 0)
mapdl.k(4, 0, 1, 0)
mapdl.l(1, 2)
mapdl.l(2, 3)
mapdl.l(3, 4)
mapdl.l(4, 1)
mapdl.al(1, 2, 3, 4)
mapdl.aplot()
mapdl.save()
mapdl.exit()
https://github.com/akaszynski/pyansys/raw/master/docs/images/aplot.png

Loading and Plotting an ANSYS Archive File

ANSYS archive files containing solid elements (both legacy and current), can be loaded using Archive and then converted to a vtk object.

import pyansys
from pyansys import examples

# Sample *.cdb
filename = examples.hexarchivefile

# Read ansys archive file
archive = pyansys.Archive(filename)

# Print raw data from cdb
for key in archive.raw:
   print("%s : %s" % (key, archive.raw[key]))

# Create a vtk unstructured grid from the raw data and plot it
grid = archive.parse_vtk(force_linear=True)
grid.plot(color='w', show_edges=True)

# write this as a vtk xml file
grid.save('hex.vtu')

# or as a vtk binary
grid.save('hex.vtk')
https://github.com/akaszynski/pyansys/raw/master/docs/images/hexbeam.png

You can then load this vtk file using pyvista or another program that uses VTK.

# Load this from vtk
import pyvista as pv
grid = pv.UnstructuredGrid('hex.vtu')
grid.plot()

Loading the Result File

This example reads in binary results from a modal analysis of a beam from ANSYS.

# Load the reader from pyansys
import pyansys
from pyansys import examples

# Sample result file
rstfile = examples.rstfile

# Create result object by loading the result file
result = pyansys.read_binary(rstfile)

# Beam natural frequencies
freqs = result.time_values
>>> print(freq)
[ 7366.49503969  7366.49503969 11504.89523664 17285.70459456
  17285.70459457 20137.19299035]

# Get the 1st bending mode shape.  Results are ordered based on the sorted
# node numbering.  Note that results are zero indexed
nnum, disp = result.nodal_solution(0)
>>> print(disp)
[[ 2.89623914e+01 -2.82480489e+01 -3.09226692e-01]
 [ 2.89489249e+01 -2.82342416e+01  2.47536161e+01]
 [ 2.89177130e+01 -2.82745126e+01  6.05151053e+00]
 [ 2.88715048e+01 -2.82764960e+01  1.22913304e+01]
 [ 2.89221536e+01 -2.82479511e+01  1.84965333e+01]
 [ 2.89623914e+01 -2.82480489e+01  3.09226692e-01]
 ...

Plotting Nodal Results

As the geometry of the model is contained within the result file, you can plot the result without having to load any additional geometry. Below, displacement for the first mode of the modal analysis beam is plotted using VTK.

# Plot the displacement of Mode 0 in the x direction
result.plot_nodal_solution(0, 'x', label='Displacement')
https://github.com/akaszynski/pyansys/raw/master/docs/images/hexbeam_disp.png

Results can be plotted non-interactively and screenshots saved by setting up the camera and saving the result. This can help with the visualization and post-processing of a batch result.

First, get the camera position from an interactive plot:

>>> cpos = result.plot_nodal_solution(0)
>>> print(cpos)
[(5.2722879880979345, 4.308737919176047, 10.467694436036483),
 (0.5, 0.5, 2.5),
 (-0.2565529433509593, 0.9227952809887077, -0.28745339908049733)]

Then generate the plot:

result.plot_nodal_solution(0, 'x', label='Displacement', cpos=cpos,
                           screenshot='hexbeam_disp.png',
                           window_size=[800, 600], interactive=False)

Stress can be plotted as well using the below code. The nodal stress is computed in the same manner that ANSYS uses by to determine the stress at each node by averaging the stress evaluated at that node for all attached elements. For now, only component stresses can be displayed.

# Display node averaged stress in x direction for result 6
result.plot_nodal_stress(5, 'Sx')
https://github.com/akaszynski/pyansys/raw/master/docs/images/beam_stress.png

Nodal stress can also be generated non-interactively with:

result.plot_nodal_stress(5, 'Sx', cpos=cpos, screenshot=beam_stress.png,
                       window_size=[800, 600], interactive=False)

Animating a Modal Solution

Mode shapes from a modal analysis can be animated using animate_nodal_solution:

result.animate_nodal_solution(0)

If you wish to save the animation to a file, specify the movie_filename and animate it with:

result.animate_nodal_solution(0, movie_filename='/tmp/movie.mp4', cpos=cpos)
https://github.com/akaszynski/pyansys/raw/master/docs/images/beam_mode_shape.gif

Reading a Full File

This example reads in the mass and stiffness matrices associated with the above example.

# Load the reader from pyansys
import pyansys
from scipy import sparse

# load the full file
fobj = pyansys.FullReader('file.full')
dofref, k, m = fobj.load_km()  # returns upper triangle only

# make k, m full, symmetric matrices
k += sparse.triu(k, 1).T
m += sparse.triu(m, 1).T

If you have scipy installed, you can solve the eigensystem for its natural frequencies and mode shapes.

from scipy.sparse import linalg

# condition the k matrix
# to avoid getting the "Factor is exactly singular" error
k += sparse.diags(np.random.random(k.shape[0])/1E20, shape=k.shape)

# Solve
w, v = linalg.eigsh(k, k=20, M=m, sigma=10000)

# System natural frequencies
f = np.real(w)**0.5/(2*np.pi)

print('First four natural frequencies')
for i in range(4):
    print '{:.3f} Hz'.format(f[i])
First four natural frequencies
1283.200 Hz
1283.200 Hz
5781.975 Hz
6919.399 Hz

Additional Tools

There are additional tools created by @natter1 at pyansysTools which include the following features:

  • Inline class: Implementing the ANSYS inline functions

  • Macros class: Macros for repeating tasks

  • The geo2d class: Easily create 2d geometries

You can also install pyansystools with

` pip install pyansystools `

License and Acknowledgments

pyansys is licensed under the MIT license.

This module, pyansys makes no commercial claim over ANSYS whatsoever. This tool extends the functionality of ANSYS by adding a Python interface in both file interface as well as interactive scripting without changing the core behavior or license of the original software. The use of the interactive APDL control of pyansys requires a legally licensed local copy of ANSYS.

To get a copy of ANSYS, please visit ANSYS

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyansys-0.41.2.tar.gz (2.0 MB view details)

Uploaded Source

Built Distributions

pyansys-0.41.2-cp38-cp38-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyansys-0.41.2-cp38-cp38-manylinux1_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.8

pyansys-0.41.2-cp38-cp38-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyansys-0.41.2-cp37-cp37m-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

pyansys-0.41.2-cp37-cp37m-manylinux1_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.7m

pyansys-0.41.2-cp37-cp37m-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pyansys-0.41.2-cp36-cp36m-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.6m Windows x86-64

pyansys-0.41.2-cp36-cp36m-manylinux1_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.6m

pyansys-0.41.2-cp36-cp36m-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

pyansys-0.41.2-cp35-cp35m-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.5m Windows x86-64

pyansys-0.41.2-cp35-cp35m-manylinux1_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.5m

File details

Details for the file pyansys-0.41.2.tar.gz.

File metadata

  • Download URL: pyansys-0.41.2.tar.gz
  • Upload date:
  • Size: 2.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.3

File hashes

Hashes for pyansys-0.41.2.tar.gz
Algorithm Hash digest
SHA256 235dd685437c4322b42aece297f23f0edb786a718190da4f0f4df482b9909a91
MD5 d9ab8824a6253d723fdb4a3cfd6d1f9f
BLAKE2b-256 f451bd5ffc80b64f8d2651e3e19a0ba0448560a3eafb76a3718f903fe17c852c

See more details on using hashes here.

File details

Details for the file pyansys-0.41.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyansys-0.41.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.3

File hashes

Hashes for pyansys-0.41.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 261bae6eb0907be3fc0c010129f9125809701ac0b0ea4d1a0ea362658ab9df41
MD5 b0a4eae1dfbc11e757eb27ea686d98b4
BLAKE2b-256 4cd740bae96c513df0a89e47fd040b092064f9a6c1be758b53d8f885bef6de10

See more details on using hashes here.

File details

Details for the file pyansys-0.41.2-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyansys-0.41.2-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.3

File hashes

Hashes for pyansys-0.41.2-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 adab52a8ce3585be49dd1a1ec24184e4e9c465c0846f77ff89ebe14c7e6dd1e7
MD5 6aa092d29c41c5202badaa681439b539
BLAKE2b-256 d10bb3fa78d7ddd204fe1344c52a89fd087fcbd2d289bf48ebd6b262127e9ef2

See more details on using hashes here.

File details

Details for the file pyansys-0.41.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pyansys-0.41.2-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.3

File hashes

Hashes for pyansys-0.41.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 061ea11218a6e60ee8a88437bd7c955d7f09b604e7cbecfa5d080b3387327249
MD5 50d64162dc934c3e496726d3c4dfb48a
BLAKE2b-256 3cc9032ea5cda6d5eeb5eee08d621121bb4ed3b2eadc148e4df80ae90217ee90

See more details on using hashes here.

File details

Details for the file pyansys-0.41.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyansys-0.41.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.7

File hashes

Hashes for pyansys-0.41.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 807a5acf752040657ba586570e672157904641ca6390e5ec2e1706c134d7aef0
MD5 e1867866c593191c209a08fb535bccf5
BLAKE2b-256 d0296585b90e0d0417bafa0b5d1fabdc5547ca6cf151a1e27aaa6c21421aefc1

See more details on using hashes here.

File details

Details for the file pyansys-0.41.2-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyansys-0.41.2-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.7

File hashes

Hashes for pyansys-0.41.2-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a90441568894a838d706ca6599311e8e83a79d9b0a5a10dfb633083988b804a6
MD5 45c9df75503bd7a81d743bf7d9813ecc
BLAKE2b-256 9b9308bf304cd43d6d175b5d0b2f59680d1ccf6a14540a4dfa4e1354970491ed

See more details on using hashes here.

File details

Details for the file pyansys-0.41.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pyansys-0.41.2-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.7

File hashes

Hashes for pyansys-0.41.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1e216185deb535aba8becfd903475d4d50fc91d9f0a32b5ebdf1057513c3bc51
MD5 c2acedc20418148ae6d6020d5f47bfec
BLAKE2b-256 46f337bfbcd6fbd80b79d50f5acb4027ba78bcc44a909b2a21b8a20912c24584

See more details on using hashes here.

File details

Details for the file pyansys-0.41.2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pyansys-0.41.2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.6.8

File hashes

Hashes for pyansys-0.41.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 77f2300efba61d4dd62f2286e3ea7ba86a5d64bb4114fcdb8aedc20d70288738
MD5 80eaa811ae1bb6f56ebbc7bdbd51a356
BLAKE2b-256 60af983cf0aa854b59d8f319da2108335dc57436e9a519d4b5db6ac55b37f7e5

See more details on using hashes here.

File details

Details for the file pyansys-0.41.2-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyansys-0.41.2-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.24.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.6.10

File hashes

Hashes for pyansys-0.41.2-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 dae972affbaead1a9abcd2e679810a1013e54b4ec8295144c1c4f34e8b6a3a79
MD5 fe6a9f19a46cb624afa66e3ccfc60f8e
BLAKE2b-256 f8c3ef47f5bfab124e3367857a04af1f08b88c735e9e6ed25e895fe693965b50

See more details on using hashes here.

File details

Details for the file pyansys-0.41.2-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pyansys-0.41.2-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.6.8

File hashes

Hashes for pyansys-0.41.2-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0b26cc84d47c7f7ecc4899577e642ed318dca09a5aa0a75fce085a62b019e722
MD5 518989d5adf9d8e36a7210a8d3a6e7cd
BLAKE2b-256 323053a26cba14e4882aa404aa130e17a05dfeec3c4a00dd872713e0b67ef2d9

See more details on using hashes here.

File details

Details for the file pyansys-0.41.2-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: pyansys-0.41.2-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.5.4

File hashes

Hashes for pyansys-0.41.2-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 cca75d27301ec6ee8a3f63ca7ae1d79fdbed861bb1d5f879d9d74cf944c80062
MD5 903bfdd6236de76ca9841afc76cb19b7
BLAKE2b-256 f53935d45aa44cd28c28a9ab498dbba0723e49f6a59dc833304165ad1c4cc6a0

See more details on using hashes here.

File details

Details for the file pyansys-0.41.2-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyansys-0.41.2-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 3.5 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/28.8.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.5.9

File hashes

Hashes for pyansys-0.41.2-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f93308a6599da168aa5defb0b9766243549210c50d500ed03070369a3d1e8fec
MD5 b268d1a0f93f03f3df3ca2c125822b56
BLAKE2b-256 af7a37bf66153b5976bd4350347fdaa161a6cf7458ca5ccbbd2bf5317c1f1f03

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page