An open source library for statistical plotting
Project description
Lets-Plot
Lets-Plot is an open-source plotting library for statistical data.
The design of Lets-Plot library is heavily influenced by Leland Wilkinson work The Grammar of Graphics describing the deep features that underlie all statistical graphics.
This grammar [...] is made up of a set of independent components that can be composed in many different ways. This makes [it] very powerful because you are not limited to a set of pre-specified graphics, but you can create new graphics that are precisely tailored for your problem.
- Hadley Wickham, "ggplot2: Elegant Graphics for Data Analysis"
We provide ggplot2-like plotting API for Python and Kotlin users.
Lets-Plot for Python
A bridge between R (ggplot2) and Python data visualization.
Learn more about Lets-Plot for Python installation and usage at the documentation website: https://lets-plot.org.
Lets-Plot for Kotlin
Lets-Plot for Kotlin adds plotting capabilities to scientific notebooks built on the Jupyter Kotlin Kermel.
You can use this API to embed charts into Kotlin/JVM and Kotlin/JS applications as well.
Lets-Plot for Kotlin at GitHub: https://github.com/JetBrains/lets-plot-kotlin.
"Lets-Plot in SciView" plugin
Scientific mode in PyCharm and in IntelliJ IDEA provides support for interactive scientific computing and data visualization.
Lets-Plot in SciView plugin adds support for interactive plotting to IntelliJ-based IDEs with the Scientific mode enabled.
Note: The Scientific mode is NOT available in communinty editions of JetBrains IDEs.
Also read:
What is new in 2.2.0
-
Added support for
coord_flip()
.See: example notebook.
-
Improved plot appearance and better
theme
support:- Bigger fonts across the board;
- Gridlines;
- 4 themes from ggplot2 (R) library:
theme_grey(), theme_light(), theme_classic(), theme_minimal()
; - Our designer theme:
theme_minimal2()
(used by default); theme_none()
for the case you want to design another theme;- A lot more parameters in the
theme()
function, also helpers:element_line()
,element_rect()
,element_text()
.
See: example notebook.
Note: fonts size, family and face still can not be configured.
-
Improved Date-time formatting support:
- tooltip format() should understand date-time format pattern [#387];
- scale_x_datetime should apply date-time formatting to the breaks [#392].
See: example notebook.
-
corr_plot()
function now also accepts pre-computed correlation coefficients. I.e. the following two expressions are equivalent:
corr_plot(iris_df).points().labels().build()
corr_plot(iris_df.corr()).points().labels().build() # new
Change Log
See CHANGELOG.md for other changes and fixes.
License
Code and documentation released under the MIT license. Copyright © 2019-2021, JetBrains s.r.o.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
File details
Details for the file lets_plot-2.2.1-cp39-cp39-win_amd64.whl
.
File metadata
- Download URL: lets_plot-2.2.1-cp39-cp39-win_amd64.whl
- Upload date:
- Size: 2.6 MB
- Tags: CPython 3.9, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 79435c3e0009fd6069690e7ef3c9f7409c70ff9d5243513b3590a617f4a690cf |
|
MD5 | 7c0ab4127074304be09f3989d9b175bd |
|
BLAKE2b-256 | 7fb50bc67d175026ef0cd4aa6104bfb21a4bbf73368d01f420138bd71e3bc260 |
File details
Details for the file lets_plot-2.2.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl
.
File metadata
- Download URL: lets_plot-2.2.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl
- Upload date:
- Size: 2.9 MB
- Tags: CPython 3.9, manylinux: glibc 2.5+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 129caf84fd6b6e689e483bec523f271f2b42263b6387fbf5ecfe1a87e7cc054c |
|
MD5 | bbc92135f56b126991ffbfab09ee31c7 |
|
BLAKE2b-256 | fe3ceb7aaed0a42c6bf2ff6213b2eed01f3489c2de0bae3991ace0e0687946cc |
File details
Details for the file lets_plot-2.2.1-cp39-cp39-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: lets_plot-2.2.1-cp39-cp39-macosx_10_9_x86_64.whl
- Upload date:
- Size: 3.1 MB
- Tags: CPython 3.9, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 95c7ce9fcb49f0aa688ab3b28df45a92da8cc3c358192287e348256c98d3f3ac |
|
MD5 | e443db2855ec67318c81b59e4e74ab0d |
|
BLAKE2b-256 | 2061b86b80f65011621bc489c4512457a3654b50711430dd629c801fdefe6c25 |
File details
Details for the file lets_plot-2.2.1-cp38-cp38-win_amd64.whl
.
File metadata
- Download URL: lets_plot-2.2.1-cp38-cp38-win_amd64.whl
- Upload date:
- Size: 2.6 MB
- Tags: CPython 3.8, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 74e82d18b889d516a12b768cdfac2e95afecdabe1f733ab0d14f115195e40b6b |
|
MD5 | 791d5de7921127460300ed7456da88a3 |
|
BLAKE2b-256 | 1e307d90ec6da956fe38e2a8d7bb75febddd05c3b968a1bb595ed6058d4dfe18 |
File details
Details for the file lets_plot-2.2.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
.
File metadata
- Download URL: lets_plot-2.2.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
- Upload date:
- Size: 2.9 MB
- Tags: CPython 3.8, manylinux: glibc 2.5+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5adb14f7c776e599dab1b98b128c098285dfaad08e0aeff9c6e54f1c1de85096 |
|
MD5 | ff1d5050dfdedb6c4ad7179a3ba7fbb5 |
|
BLAKE2b-256 | 2802534e4b81136757f2e29b763337f387649192647589a7f579547abb21b5b3 |
File details
Details for the file lets_plot-2.2.1-cp38-cp38-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: lets_plot-2.2.1-cp38-cp38-macosx_10_9_x86_64.whl
- Upload date:
- Size: 3.1 MB
- Tags: CPython 3.8, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3cc293da2b0ecddcec298461c49e9624c2d12171b454dfe50c85392d2f9feefa |
|
MD5 | a6c31585e37e626c2637869627583ee5 |
|
BLAKE2b-256 | e174cae1fc912b534e62961d65e511f8b3e969c1cba5dec08152de209a9ae3d1 |
File details
Details for the file lets_plot-2.2.1-cp37-cp37m-win_amd64.whl
.
File metadata
- Download URL: lets_plot-2.2.1-cp37-cp37m-win_amd64.whl
- Upload date:
- Size: 2.6 MB
- Tags: CPython 3.7m, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3dbc5225e0c4d5b305322977c7d9e69fcc325d3b2880a2603cb1f6c65851b07c |
|
MD5 | 5f55a850667557352e00a1e407919447 |
|
BLAKE2b-256 | f517a569902748c3994587affd618a5a9ed8a0b0f5af0e4a96d5d2b905a5f272 |
File details
Details for the file lets_plot-2.2.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
.
File metadata
- Download URL: lets_plot-2.2.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
- Upload date:
- Size: 2.9 MB
- Tags: CPython 3.7m, manylinux: glibc 2.5+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a3bf707c0d32a1327d9a22a9693fca885c8c4fe6d8727a8f0b624bc7d791f8a5 |
|
MD5 | d3c2cbf29327a73ff2f46af276683ac5 |
|
BLAKE2b-256 | cd9601976d6b5debdc2101c75584335b2368351523ead03d4195256b9941641f |
File details
Details for the file lets_plot-2.2.1-cp37-cp37m-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: lets_plot-2.2.1-cp37-cp37m-macosx_10_9_x86_64.whl
- Upload date:
- Size: 3.1 MB
- Tags: CPython 3.7m, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 07de0f3a99ace135769b9814497d26aa39d8dae6710d75dedf332ef6dcc5f998 |
|
MD5 | 17f44583b7dee04a79c87f41656f2c5c |
|
BLAKE2b-256 | ad8236748d62ef41063bcfeb64ac887ec9afa4d5c6b76baca4f398d5f8aeecd4 |
File details
Details for the file lets_plot-2.2.1-cp36-cp36m-win_amd64.whl
.
File metadata
- Download URL: lets_plot-2.2.1-cp36-cp36m-win_amd64.whl
- Upload date:
- Size: 2.6 MB
- Tags: CPython 3.6m, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 491d2001835476289bc14f3d32577c66cb0c74e2ad6bf20470a95e80ee7ffd59 |
|
MD5 | 4d0a065aa7b4bb83e8022f00c30e9f60 |
|
BLAKE2b-256 | e1eb08d1f2fc6814a3344f40654642d0898d31da99273d11e8f6d86e2b9adbe7 |
File details
Details for the file lets_plot-2.2.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
.
File metadata
- Download URL: lets_plot-2.2.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
- Upload date:
- Size: 2.9 MB
- Tags: CPython 3.6m, manylinux: glibc 2.5+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0c8e03bcaa468d64816c9e19a1e23521521f78da4972d1268ed46319f98188cb |
|
MD5 | b87a32c38ab854c9011520624a85536c |
|
BLAKE2b-256 | 731c02cca63d554712b97965353d7100476ce9ca577416a417c5734d8c55b72a |
File details
Details for the file lets_plot-2.2.1-cp36-cp36m-macosx_10_7_x86_64.whl
.
File metadata
- Download URL: lets_plot-2.2.1-cp36-cp36m-macosx_10_7_x86_64.whl
- Upload date:
- Size: 3.2 MB
- Tags: CPython 3.6m, macOS 10.7+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c043a734fe53bb47c9cf19a67ccab6da4f1355230338c307700306ebb2c55166 |
|
MD5 | 4e900c7824b47382ac81dfa8d2366650 |
|
BLAKE2b-256 | 45f6ee25b5f6afce0a5f95d25bd42fe9631200cdc78d1ce5cae924eb1c794c11 |