Skip to main content

An open source library for statistical plotting

Project description

Lets-Plot official JetBrains project

Couldn't load MIT license svg

Lets-Plot is an open-source plotting library for statistical data.

The design of Lets-Plot library is heavily influenced by Leland Wilkinson work The Grammar of Graphics describing the deep features that underlie all statistical graphics.

This grammar [...] is made up of a set of independent components that can be composed in many different ways. This makes [it] very powerful because you are not limited to a set of pre-specified graphics, but you can create new graphics that are precisely tailored for your problem.

We provide ggplot2-like plotting API for Python and Kotlin users.

Lets-Plot for Python

A bridge between R (ggplot2) and Python data visualization.

Learn more about Lets-Plot for Python installation and usage at the documentation website: https://lets-plot.org.

Lets-Plot for Kotlin

Lets-Plot for Kotlin adds plotting capabilities to scientific notebooks built on the Jupyter Kotlin Kermel.

You can use this API to embed charts into Kotlin/JVM and Kotlin/JS applications as well.

Lets-Plot for Kotlin at GitHub: https://github.com/JetBrains/lets-plot-kotlin.

"Lets-Plot in SciView" plugin

JetBrains Plugins JetBrains plugins

Scientific mode in PyCharm and in IntelliJ IDEA provides support for interactive scientific computing and data visualization.

Lets-Plot in SciView plugin adds support for interactive plotting to IntelliJ-based IDEs with the Scientific mode enabled.

Note: The Scientific mode is NOT available in communinty editions of JetBrains IDEs.

Also read:

What is new in 2.2.0

  • Added support for coord_flip().

    See: example notebook.

  • Improved plot appearance and better theme support:

    • Bigger fonts across the board;
    • Gridlines;
    • 4 themes from ggplot2 (R) library: theme_grey(), theme_light(), theme_classic(), theme_minimal();
    • Our designer theme: theme_minimal2() (used by default);
    • theme_none() for the case you want to design another theme;
    • A lot more parameters in the theme() function, also helpers: element_line(), element_rect(), element_text().

    See: example notebook.

Note: fonts size, family and face still can not be configured.

  • Improved Date-time formatting support:

    • tooltip format() should understand date-time format pattern [#387];
    • scale_x_datetime should apply date-time formatting to the breaks [#392].

    See: example notebook.

  • corr_plot() function now also accepts pre-computed correlation coefficients. I.e. the following two expressions are equivalent:

    corr_plot(iris_df).points().labels().build()
    corr_plot(iris_df.corr()).points().labels().build()  # new

Change Log

See CHANGELOG.md for other changes and fixes.

License

Code and documentation released under the MIT license. Copyright © 2019-2021, JetBrains s.r.o.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

lets_plot-2.2.1-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

lets_plot-2.2.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ x86-64

lets_plot-2.2.1-cp39-cp39-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

lets_plot-2.2.1-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

lets_plot-2.2.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ x86-64

lets_plot-2.2.1-cp38-cp38-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

lets_plot-2.2.1-cp37-cp37m-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

lets_plot-2.2.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ x86-64

lets_plot-2.2.1-cp37-cp37m-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

lets_plot-2.2.1-cp36-cp36m-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

lets_plot-2.2.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.5+ x86-64

lets_plot-2.2.1-cp36-cp36m-macosx_10_7_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.6m macOS 10.7+ x86-64

File details

Details for the file lets_plot-2.2.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: lets_plot-2.2.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for lets_plot-2.2.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 79435c3e0009fd6069690e7ef3c9f7409c70ff9d5243513b3590a617f4a690cf
MD5 7c0ab4127074304be09f3989d9b175bd
BLAKE2b-256 7fb50bc67d175026ef0cd4aa6104bfb21a4bbf73368d01f420138bd71e3bc260

See more details on using hashes here.

File details

Details for the file lets_plot-2.2.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.2.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 129caf84fd6b6e689e483bec523f271f2b42263b6387fbf5ecfe1a87e7cc054c
MD5 bbc92135f56b126991ffbfab09ee31c7
BLAKE2b-256 fe3ceb7aaed0a42c6bf2ff6213b2eed01f3489c2de0bae3991ace0e0687946cc

See more details on using hashes here.

File details

Details for the file lets_plot-2.2.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: lets_plot-2.2.1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for lets_plot-2.2.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 95c7ce9fcb49f0aa688ab3b28df45a92da8cc3c358192287e348256c98d3f3ac
MD5 e443db2855ec67318c81b59e4e74ab0d
BLAKE2b-256 2061b86b80f65011621bc489c4512457a3654b50711430dd629c801fdefe6c25

See more details on using hashes here.

File details

Details for the file lets_plot-2.2.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: lets_plot-2.2.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for lets_plot-2.2.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 74e82d18b889d516a12b768cdfac2e95afecdabe1f733ab0d14f115195e40b6b
MD5 791d5de7921127460300ed7456da88a3
BLAKE2b-256 1e307d90ec6da956fe38e2a8d7bb75febddd05c3b968a1bb595ed6058d4dfe18

See more details on using hashes here.

File details

Details for the file lets_plot-2.2.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.2.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5adb14f7c776e599dab1b98b128c098285dfaad08e0aeff9c6e54f1c1de85096
MD5 ff1d5050dfdedb6c4ad7179a3ba7fbb5
BLAKE2b-256 2802534e4b81136757f2e29b763337f387649192647589a7f579547abb21b5b3

See more details on using hashes here.

File details

Details for the file lets_plot-2.2.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: lets_plot-2.2.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for lets_plot-2.2.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3cc293da2b0ecddcec298461c49e9624c2d12171b454dfe50c85392d2f9feefa
MD5 a6c31585e37e626c2637869627583ee5
BLAKE2b-256 e174cae1fc912b534e62961d65e511f8b3e969c1cba5dec08152de209a9ae3d1

See more details on using hashes here.

File details

Details for the file lets_plot-2.2.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: lets_plot-2.2.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for lets_plot-2.2.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 3dbc5225e0c4d5b305322977c7d9e69fcc325d3b2880a2603cb1f6c65851b07c
MD5 5f55a850667557352e00a1e407919447
BLAKE2b-256 f517a569902748c3994587affd618a5a9ed8a0b0f5af0e4a96d5d2b905a5f272

See more details on using hashes here.

File details

Details for the file lets_plot-2.2.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.2.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a3bf707c0d32a1327d9a22a9693fca885c8c4fe6d8727a8f0b624bc7d791f8a5
MD5 d3c2cbf29327a73ff2f46af276683ac5
BLAKE2b-256 cd9601976d6b5debdc2101c75584335b2368351523ead03d4195256b9941641f

See more details on using hashes here.

File details

Details for the file lets_plot-2.2.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: lets_plot-2.2.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for lets_plot-2.2.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 07de0f3a99ace135769b9814497d26aa39d8dae6710d75dedf332ef6dcc5f998
MD5 17f44583b7dee04a79c87f41656f2c5c
BLAKE2b-256 ad8236748d62ef41063bcfeb64ac887ec9afa4d5c6b76baca4f398d5f8aeecd4

See more details on using hashes here.

File details

Details for the file lets_plot-2.2.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: lets_plot-2.2.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for lets_plot-2.2.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 491d2001835476289bc14f3d32577c66cb0c74e2ad6bf20470a95e80ee7ffd59
MD5 4d0a065aa7b4bb83e8022f00c30e9f60
BLAKE2b-256 e1eb08d1f2fc6814a3344f40654642d0898d31da99273d11e8f6d86e2b9adbe7

See more details on using hashes here.

File details

Details for the file lets_plot-2.2.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.2.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 0c8e03bcaa468d64816c9e19a1e23521521f78da4972d1268ed46319f98188cb
MD5 b87a32c38ab854c9011520624a85536c
BLAKE2b-256 731c02cca63d554712b97965353d7100476ce9ca577416a417c5734d8c55b72a

See more details on using hashes here.

File details

Details for the file lets_plot-2.2.1-cp36-cp36m-macosx_10_7_x86_64.whl.

File metadata

  • Download URL: lets_plot-2.2.1-cp36-cp36m-macosx_10_7_x86_64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.6m, macOS 10.7+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for lets_plot-2.2.1-cp36-cp36m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 c043a734fe53bb47c9cf19a67ccab6da4f1355230338c307700306ebb2c55166
MD5 4e900c7824b47382ac81dfa8d2366650
BLAKE2b-256 45f6ee25b5f6afce0a5f95d25bd42fe9631200cdc78d1ce5cae924eb1c794c11

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page