Skip to main content

An open source library for statistical plotting

Project description

Lets-Plot official JetBrains project

Couldn't load MIT license svg

Lets-Plot is an open-source plotting library for statistical data.

The design of Lets-Plot library is heavily influenced by Leland Wilkinson work The Grammar of Graphics describing the deep features that underlie all statistical graphics.

This grammar [...] is made up of a set of independent components that can be composed in many different ways. This makes [it] very powerful because you are not limited to a set of pre-specified graphics, but you can create new graphics that are precisely tailored for your problem.

We provide ggplot2-like plotting API for Python and Kotlin users.

Lets-Plot for Python

A bridge between R (ggplot2) and Python data visualization.

Learn more about Lets-Plot for Python installation and usage at the documentation website: https://lets-plot.org.

Lets-Plot for Kotlin

Lets-Plot for Kotlin adds plotting capabilities to scientific notebooks built on the Jupyter Kotlin Kermel.

You can use this API to embed charts into Kotlin/JVM and Kotlin/JS applications as well.

Lets-Plot for Kotlin at GitHub: https://github.com/JetBrains/lets-plot-kotlin.

"Lets-Plot in SciView" plugin

JetBrains Plugins JetBrains plugins

Scientific mode in PyCharm, DataSpell and in IntelliJ IDEA provides support for interactive scientific computing and data visualization.

Lets-Plot in SciView plugin adds support for interactive plotting to IntelliJ-based IDEs with the Scientific mode enabled.

Note: The Scientific mode is NOT available in communinty editions of JetBrains IDEs.

Also read:

What is new in 2.2.0

  • Added support for coord_flip().

    See: example notebook.

  • Improved plot appearance and better theme support:

    • Bigger fonts across the board;
    • Gridlines;
    • 4 themes from ggplot2 (R) library: theme_grey(), theme_light(), theme_classic(), theme_minimal();
    • Our designer theme: theme_minimal2() (used by default);
    • theme_none() for the case you want to design another theme;
    • A lot more parameters in the theme() function, also helpers: element_line(), element_rect(), element_text().

    See: example notebook.

Note: fonts size, family and face still can not be configured.

  • Improved Date-time formatting support:

    • tooltip format() should understand date-time format pattern [#387];
    • scale_x_datetime should apply date-time formatting to the breaks [#392].

    See: example notebook.

  • corr_plot() function now also accepts pre-computed correlation coefficients. I.e. the following two expressions are equivalent:

    corr_plot(iris_df).points().labels().build()
    corr_plot(iris_df.corr()).points().labels().build()  # new

Change Log

See CHANGELOG.md for other changes and fixes.

License

Code and documentation released under the MIT license. Copyright © 2019-2021, JetBrains s.r.o.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

lets_plot-2.2.1rc1-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

lets_plot-2.2.1rc1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ x86-64

lets_plot-2.2.1rc1-cp39-cp39-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

lets_plot-2.2.1rc1-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

lets_plot-2.2.1rc1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ x86-64

lets_plot-2.2.1rc1-cp38-cp38-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

lets_plot-2.2.1rc1-cp37-cp37m-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

lets_plot-2.2.1rc1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ x86-64

lets_plot-2.2.1rc1-cp37-cp37m-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

lets_plot-2.2.1rc1-cp36-cp36m-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

lets_plot-2.2.1rc1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.5+ x86-64

lets_plot-2.2.1rc1-cp36-cp36m-macosx_10_7_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.6m macOS 10.7+ x86-64

File details

Details for the file lets_plot-2.2.1rc1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: lets_plot-2.2.1rc1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for lets_plot-2.2.1rc1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1ce0b5f7617c1f75bba9b82e117310c602e32d14bbdd4ed0b019f6edd2fd7227
MD5 3a4942a2b48bed9ac95fccb4b9a6d517
BLAKE2b-256 bf27f20a730904a39babf2bd31a48f1a9817f6de4fda71aa95222d8edab03920

See more details on using hashes here.

File details

Details for the file lets_plot-2.2.1rc1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.2.1rc1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 fdc497bc513adca64ca2129db357010956cb9eb0dbd2b4a7e854457984905c86
MD5 4ae86a4911e779608fb0e6f8e0d6ec7b
BLAKE2b-256 28651644d999d11dcab48723417e3568967df261eadea46c6ad400fabc9efe02

See more details on using hashes here.

File details

Details for the file lets_plot-2.2.1rc1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: lets_plot-2.2.1rc1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for lets_plot-2.2.1rc1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e9330673807cbffb4bd7aff3b3676a0fe4cf2e10874af1693c5a995ce5d61a07
MD5 fd422a907e7752d876bafaf30a8aea7c
BLAKE2b-256 15b5b547250900b5ea7ef138a1d7d6d630109a004603664d8c29deb53f96f626

See more details on using hashes here.

File details

Details for the file lets_plot-2.2.1rc1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: lets_plot-2.2.1rc1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for lets_plot-2.2.1rc1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f7db067d778c460e4bf1876a6d2759dadd134b0efa3763e6688f206b93fd802c
MD5 28bf638611454fd86139e27a2df9aaf2
BLAKE2b-256 4f52f0383243890035e3dbdb09971c74661ad32e5b59bfecd2c2b015587fd5c9

See more details on using hashes here.

File details

Details for the file lets_plot-2.2.1rc1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.2.1rc1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7e1bfdc345dfa409504997528ee2341b3230c861612a140d5e253537ae0ea8b0
MD5 0d25e76dafec22f9dd62e21b743647fe
BLAKE2b-256 f832e12d7fd79c62dea9e1dd5c936c75b0935b1311089a0c27e120a094861511

See more details on using hashes here.

File details

Details for the file lets_plot-2.2.1rc1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: lets_plot-2.2.1rc1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for lets_plot-2.2.1rc1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 19e04343cdb752db8dbef8ac752c443cb8be50866e3767d6c30a14310c1e3f3e
MD5 546c06e97c0ea7c524c65d3cffa5083c
BLAKE2b-256 f1926e7918a34b8102bfbc98f70efdf8c62209b5de33359e016c827b44a90aad

See more details on using hashes here.

File details

Details for the file lets_plot-2.2.1rc1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: lets_plot-2.2.1rc1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for lets_plot-2.2.1rc1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 8d8a79efda5b87c19461ee7a4f3e4ea82dc0caff6cf78d15b61c9ffc0d5748eb
MD5 8d2b7560eeacc9d40b8b7bf79d78c4ba
BLAKE2b-256 c57ba800f010d8180deab4453c9f7c6c9c2eab910316843e44eca32799a3f7f5

See more details on using hashes here.

File details

Details for the file lets_plot-2.2.1rc1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.2.1rc1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 721bd2ef21f1cc3cbc942e70bc045a53957c0d4bf2f45afa36ef089324b82079
MD5 caef064c5ea282617f4cffb48a60a487
BLAKE2b-256 0a513ba7ea7503e584773391e8c24a5d16dff4bb5929fd585acc96695d0a2185

See more details on using hashes here.

File details

Details for the file lets_plot-2.2.1rc1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: lets_plot-2.2.1rc1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for lets_plot-2.2.1rc1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 32a44bb9bf22a7078091395cae0e020aa5914e49759fcf2681d7396cba35bbdf
MD5 21c6f048210337862c894b17bce8d102
BLAKE2b-256 d55d67bad02f9e08cb35f4fa8028a34383bfa6d8c1d5ec15b7cab2ebde86f8f7

See more details on using hashes here.

File details

Details for the file lets_plot-2.2.1rc1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: lets_plot-2.2.1rc1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for lets_plot-2.2.1rc1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 eb50d8e452fd1d116a8b8e483f5ba44a667076a36ac08dda3f76ceca51a6d4af
MD5 312807dcc09508121e7ae066bef74142
BLAKE2b-256 045c0d1068cbfb36175f87e703c9999506d67eb5946a26d5a45dd003ce3d246a

See more details on using hashes here.

File details

Details for the file lets_plot-2.2.1rc1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.2.1rc1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 bb20767e8c6a4047532cc7cc43ec33f3e1de64aa0a5a85ccd10f935cc2837b9d
MD5 d3b9f7f65c733337775ba34a1f7c9b24
BLAKE2b-256 f9d2b765d0cb679358a214d13f833c35d4ab428df68c149dcc97dbad03d16826

See more details on using hashes here.

File details

Details for the file lets_plot-2.2.1rc1-cp36-cp36m-macosx_10_7_x86_64.whl.

File metadata

  • Download URL: lets_plot-2.2.1rc1-cp36-cp36m-macosx_10_7_x86_64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.6m, macOS 10.7+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for lets_plot-2.2.1rc1-cp36-cp36m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 01c2db957ef5b93ed3e922025366718d2a37572395166e0cb9c961b0025964d1
MD5 af7331a9f639a0734ad597b469dce3f3
BLAKE2b-256 274600ecb9ab2fa3cc75e7c439b6376bf79721f25837592bda6b8be8707ce0f1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page