Skip to main content

An open source library for statistical plotting

Project description

Lets-Plot official JetBrains project

Couldn't load MIT license svg

Lets-Plot is an open-source plotting library for statistical data.

The design of Lets-Plot library is heavily influenced by Leland Wilkinson work The Grammar of Graphics describing the deep features that underlie all statistical graphics.

This grammar [...] is made up of a set of independent components that can be composed in many different ways. This makes [it] very powerful because you are not limited to a set of pre-specified graphics, but you can create new graphics that are precisely tailored for your problem.

We provide ggplot2-like plotting API for Python and Kotlin users.

Lets-Plot for Python

A bridge between R (ggplot2) and Python data visualization.

Learn more about Lets-Plot for Python installation and usage at the documentation website: https://lets-plot.org.

Lets-Plot for Kotlin

Lets-Plot for Kotlin adds plotting capabilities to scientific notebooks built on the Jupyter Kotlin Kermel.

You can use this API to embed charts into Kotlin/JVM and Kotlin/JS applications as well.

Lets-Plot for Kotlin at GitHub: https://github.com/JetBrains/lets-plot-kotlin.

"Lets-Plot in SciView" plugin

JetBrains Plugins JetBrains plugins

Scientific mode in PyCharm and in IntelliJ IDEA provides support for interactive scientific computing and data visualization.

Lets-Plot in SciView plugin adds support for interactive plotting to IntelliJ-based IDEs with the Scientific mode enabled.

Note: The Scientific mode is NOT available in communinty editions of JetBrains IDEs.

Also read:

What is new in 2.3.0

  • Geometries

    • geom_violin()

    See: example notebook.

    • geom_dotplot()

    See: example notebook.

    • geom_ydotplot()

    See: example notebook.

  • Labels and Legends

    • Plot subtitle and caption are now supported.

      You can use parameter subtitlein ggtitle() and labs() to add a subtitle below the plot' title, and parameter caption in labs() to add a caption below plot.

    • Multi-line labels.

      The 'newline' character (\n) now works as line break in plot title, subtitle and caption, in legend's title and in tooltips.

    See: example notebook.

  • Tooltips

f-22a/images/tooltip.png
  • Improved appearance

  • Automatic word wrap makes long text values look better

  • Tooltip title

    You can use new method title() in the Tooltip castomization API to add a title to tooltip.

See: example notebook.

  • Maps

    Our interactive map widget now supports automatic size adjustment for markers on map (i.e. the radius of points and the width of lines) when zooming. You can control this behavior using new parameters data_size_zoomin, const_size_zoomin in geom_livemap().

    Also note new "reset" tool-button.

f-22a/images/map_airports_zoomin.gif
  • Facets

    "Free" scales are now supported on faceted plots.

    See: example notebook.

Change Log

See CHANGELOG.md for other changes and fixes.

License

Code and documentation released under the MIT license. Copyright © 2019-2022, JetBrains s.r.o.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

lets_plot-2.3.0-cp39-cp39-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

lets_plot-2.3.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ x86-64

lets_plot-2.3.0-cp39-cp39-macosx_10_9_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

lets_plot-2.3.0-cp38-cp38-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

lets_plot-2.3.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ x86-64

lets_plot-2.3.0-cp38-cp38-macosx_10_9_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

lets_plot-2.3.0-cp37-cp37m-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.7m Windows x86-64

lets_plot-2.3.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ x86-64

lets_plot-2.3.0-cp37-cp37m-macosx_10_9_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

lets_plot-2.3.0-cp36-cp36m-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.6m Windows x86-64

lets_plot-2.3.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.5+ x86-64

lets_plot-2.3.0-cp36-cp36m-macosx_10_7_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.6m macOS 10.7+ x86-64

File details

Details for the file lets_plot-2.3.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: lets_plot-2.3.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for lets_plot-2.3.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 af84f2f009d324301ec291998d9329bc9a53c85896220b3770ad50c238335f9f
MD5 2fbc54c815de13e0bddfb332bdeeb469
BLAKE2b-256 d3ab2c8a42439084f98970df7627c9e4f72f7e4aa27ce2f08c938a1c10313c05

See more details on using hashes here.

File details

Details for the file lets_plot-2.3.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.3.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b7f7c24f0c81fba4735cc4e57fad1b6b53aa61f79d84887d24f62e4b199e8f98
MD5 650b29db7db460c1c725bc3f50ecea79
BLAKE2b-256 ae3f7bf769f0965c10877a9db1238e267f2ab8804798ca1d2dc976e7c0460020

See more details on using hashes here.

File details

Details for the file lets_plot-2.3.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: lets_plot-2.3.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for lets_plot-2.3.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 00c6baf64531a742d5ccf5a50b24504e2ec09068b4cd65b9cb1a6cdfeafd8803
MD5 2579f1b73d247916a92cb1f5ff4d2c29
BLAKE2b-256 10449f0bf6e4f7280d00a71a3f2a597e1569caa68113bbb9ce4a4218af0f800d

See more details on using hashes here.

File details

Details for the file lets_plot-2.3.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: lets_plot-2.3.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for lets_plot-2.3.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 87068774e9aa27f593dc055788e0f3e7cd431a0a14f7d02f740c28546fa8a0b6
MD5 c6ede6cc65a8ebec7f3f05fd960f4992
BLAKE2b-256 65806669547d507797f2d26a51b7efa4e3a4ad7031fa5223184f185ec2f37e91

See more details on using hashes here.

File details

Details for the file lets_plot-2.3.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.3.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7e88b2744cd0f1c5537e66def52eba0bd60e44ac3a975ff3f2a1ae8c06fdef37
MD5 0e6f643a7fe134a3436e1663838da9e6
BLAKE2b-256 f45d3f9b412a95fbf63c5eeb5d4d320a21ca7a90d9ba826c888f3ace5172303d

See more details on using hashes here.

File details

Details for the file lets_plot-2.3.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: lets_plot-2.3.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for lets_plot-2.3.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ae6f82292fe39f2df6f6aa9b563590732c8a09a614f7aa3a6e76873db7988e8e
MD5 2e7e00a2f501087ab965291f07b1cf1b
BLAKE2b-256 27200b8d05ac89d3030e82c7fa7b21c79c53dd326b6469b3f233fed0cb8d2df1

See more details on using hashes here.

File details

Details for the file lets_plot-2.3.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: lets_plot-2.3.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for lets_plot-2.3.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 b08cb9580dca50d1222bd93103f30f6cbb9da3501f98f3389bc624c00079fa25
MD5 2605660d504c1a427d27d3539d0a419e
BLAKE2b-256 844f189a76a0b285b5d46e544397c82e9f2b7e41efe967bbec2cce4614921b0e

See more details on using hashes here.

File details

Details for the file lets_plot-2.3.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.3.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 fb69b5f8cbef1db52fdcf2dee465a36071c5ddf89573ef375651fc9d859c2354
MD5 9b7b1317ecc992d7d3ca3610ec8ec931
BLAKE2b-256 907da721b84a42f475e4b706b0573bc2620ce99ebf7ce49c1db945378ece4235

See more details on using hashes here.

File details

Details for the file lets_plot-2.3.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: lets_plot-2.3.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for lets_plot-2.3.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 937714e74ae36ddc90d2a87bb439cf38e455ad8179987b87127139cc8295b1ca
MD5 c9b03d14927772d70aa8ca2a963e1ef1
BLAKE2b-256 9549294e75b7f03bb3c34ad650f39413aa82f33b9cb63036b639b82f785bfdf5

See more details on using hashes here.

File details

Details for the file lets_plot-2.3.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: lets_plot-2.3.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for lets_plot-2.3.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 9f82a84be2dcb5af891005d5c153fb5b9f65c844b0a6607fafac4a683d75c482
MD5 eda31c745a0468edd67e8d7c3818fb72
BLAKE2b-256 5d589b347534ce2e3333af3128806735cac10f27ca8887afa837c64716fd5740

See more details on using hashes here.

File details

Details for the file lets_plot-2.3.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.3.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 969a4d01d15c2a6b7f35374ef2dc884ae075435146958bc3d27d9de046f5383f
MD5 c70397650111efa51b1b4c0ec6946de3
BLAKE2b-256 01123a401ed3bb91570ee05850a1992f9cd6be004df2106c77f9954f093c99b8

See more details on using hashes here.

File details

Details for the file lets_plot-2.3.0-cp36-cp36m-macosx_10_7_x86_64.whl.

File metadata

  • Download URL: lets_plot-2.3.0-cp36-cp36m-macosx_10_7_x86_64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.6m, macOS 10.7+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for lets_plot-2.3.0-cp36-cp36m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 8ba5afe9e886a665f6ded9a5306ede9edb2a3b60350426d5dab4ee4e5f2a91f9
MD5 e48a2a6e0269ceba25210c9327249c8f
BLAKE2b-256 9901854eadb8d9f14a363597e21efe96d86dbda90aaa32de227416b031c21ffd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page