Skip to main content

An open source library for statistical plotting

Project description

Lets-Plot official JetBrains project

Couldn't load MIT license svg

Lets-Plot is an open-source plotting library for statistical data.

The design of Lets-Plot library is heavily influenced by Leland Wilkinson work The Grammar of Graphics describing the deep features that underlie all statistical graphics.

This grammar [...] is made up of a set of independent components that can be composed in many different ways. This makes [it] very powerful because you are not limited to a set of pre-specified graphics, but you can create new graphics that are precisely tailored for your problem.

We provide ggplot2-like plotting API for Python and Kotlin users.

Lets-Plot for Python

A bridge between R (ggplot2) and Python data visualization.

Learn more about Lets-Plot for Python installation and usage at the documentation website: https://lets-plot.org.

Lets-Plot for Kotlin

Lets-Plot for Kotlin adds plotting capabilities to scientific notebooks built on the Jupyter Kotlin Kermel.

You can use this API to embed charts into Kotlin/JVM and Kotlin/JS applications as well.

Lets-Plot for Kotlin at GitHub: https://github.com/JetBrains/lets-plot-kotlin.

"Lets-Plot in SciView" plugin

JetBrains Plugins JetBrains plugins

Scientific mode in PyCharm and in IntelliJ IDEA provides support for interactive scientific computing and data visualization.

Lets-Plot in SciView plugin adds support for interactive plotting to IntelliJ-based IDEs with the Scientific mode enabled.

Note: The Scientific mode is NOT available in communinty editions of JetBrains IDEs.

Also read:

What is new in 2.5.0

  • Plot Theme

    • theme_bw()

      See: example notebook.

    • Theme Flavors

      Theme flavor offers an easy way to change the colors of all elements in a theme to match a specific color scheme.

      In this release, we have added the following flavors:

      • darcula
      • solarized_light
      • solarized_dark
      • high_contrast_light
      • high_contrast_dark

    f-22c/images/theme_flavors.png

    See: example notebook.

    • New parameters in element_text()

  • New Plot Types

    geom_label().

    See: example notebook.

  • Color Scales

    Viridis color scales: scale_color_viridis(), scale_fill_viridis().

    Supported colormaps:

    • magma
    • inferno
    • plasma
    • viridis
    • cividis
    • turbo
    • twilight

    f-22c/images/viridis_plasma.png

    See: example notebook.

Change Log

See CHANGELOG.md for other changes and fixes.

License

Code and documentation released under the MIT license. Copyright © 2019-2022, JetBrains s.r.o.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

lets_plot-2.5.0-cp310-cp310-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

lets_plot-2.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

lets_plot-2.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

lets_plot-2.5.0-cp310-cp310-macosx_11_0_arm64.whl (3.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

lets_plot-2.5.0-cp310-cp310-macosx_10_9_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

lets_plot-2.5.0-cp39-cp39-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

lets_plot-2.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

lets_plot-2.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

lets_plot-2.5.0-cp39-cp39-macosx_11_0_arm64.whl (3.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

lets_plot-2.5.0-cp39-cp39-macosx_10_9_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

lets_plot-2.5.0-cp38-cp38-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

lets_plot-2.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

lets_plot-2.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

lets_plot-2.5.0-cp38-cp38-macosx_11_0_arm64.whl (3.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

lets_plot-2.5.0-cp38-cp38-macosx_10_9_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

lets_plot-2.5.0-cp37-cp37m-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.7m Windows x86-64

lets_plot-2.5.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

lets_plot-2.5.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

lets_plot-2.5.0-cp37-cp37m-macosx_10_9_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

lets_plot-2.5.0-cp36-cp36m-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.6m Windows x86-64

lets_plot-2.5.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

lets_plot-2.5.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

lets_plot-2.5.0-cp36-cp36m-macosx_10_7_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.6m macOS 10.7+ x86-64

File details

Details for the file lets_plot-2.5.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for lets_plot-2.5.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c1354314213019721f2e787b42505a99ac957113573c889da9f55486feb436e8
MD5 8511a189088c5c2d067484797f08ae8f
BLAKE2b-256 bdacb4e20c9220679ddefbf1c36d5335f720571b074b4663cffc9fcf86569952

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5b01d1031dcbfbc6647e7eda897bbca944279f1378fece618b3e206bbc62f1f3
MD5 cfaf79e9ee6917ef3f2213d3e094daab
BLAKE2b-256 13cbfaaea29dacef0f426f5c99651d9dabcfad645cebe39891c0e95bddd58d7d

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-2.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 97b2a4102b4c3d60e8a2c35a00a6e87a3dc530c3d4e89e13ffbc841ea6f45592
MD5 b91a7131410894de40165b4263b0ff4b
BLAKE2b-256 e71b8a150a9a2fbea257d21dc4068995748e5cb2da2f83b9cd3d793a01039e27

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-2.5.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ec38f48d91b01c5169add94eff3a0d7e3c2d61159686f9738287528b4afcdfb5
MD5 48760b13f108d31ea7aedf1f0c508f37
BLAKE2b-256 5402406c087cac5d995d41dcd20938b584e111d0dc43053cf83010a2e43e5d1d

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.5.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f4c5df854aa9661cf3ed4cfb0ed7ecdf10b658a27f00749a231210046f47d1a0
MD5 eb84ffcb8a897f4c42cb7a39a7a7f8e9
BLAKE2b-256 3572a0533c59a878dc448c8aee5d580d98fade750a3e7daf380a1d4ae7b99617

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: lets_plot-2.5.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.4

File hashes

Hashes for lets_plot-2.5.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 afc86cc36013fc4c7d0863bd3e061e26a26fbf4ee0f590de3414d25cf1cc7c0a
MD5 80a69c0494283119d27057dd68915aec
BLAKE2b-256 5baca4cb9197f2777de25e33fc6d98e97ffa065336cdc4ec81a375c157a0cd38

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d6de929fc16ed9352b16f0ae1c62842e52e23b7229a11192cada182fd07995e3
MD5 404c73ac094483fb5ade4ece42d5ffba
BLAKE2b-256 8fcc380f7389a971ca128b247fd457e0c1fd6dfd2ee2404d37ee1cf52d23874e

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-2.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e94a22c0a876ec259c4664fb11d7ca9e2685b4e5b3e83fd9e9df2dfff0e0b478
MD5 22d441ec03c1dd85d517bf719aee1923
BLAKE2b-256 7810cebff7a159137bdedcba24117bb01539172d9fe19c67ac34b28fbe5a7b52

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-2.5.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d606f1a2aca9b35b1810ec6567f31ddaa70a6ba24b20a8c01c3127bfd192fb09
MD5 8b87a556c63ef7e3a368b79469ed65fb
BLAKE2b-256 8e34612533ecd766c0c9e1506b506493e878b9f79e5d39c75b8f17d35cd9c2b4

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.5.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 039382dbd395f2c04055b2e3d7c1cc7c63dee936f6e5d2ef3ae78fd7403e5489
MD5 529ae87bb3b02009c1e84a76379531c4
BLAKE2b-256 76418ade0fe33442692916bc2b64b0756d5da86e65944a7daa4d9438294836e9

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: lets_plot-2.5.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.4

File hashes

Hashes for lets_plot-2.5.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 95865c7eaad4e89211fdb0cea000a7787a51be42c4baeb50c4258db73fbf4ad4
MD5 25f232d4f000382401aa92ebddcb0cc1
BLAKE2b-256 02e0b036bada2435a691acc2147df361fe14c4e6af4011ae9af7537a43cef813

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d3b3650dd8fa13cb1a95e0df9ccb0a8c6867a086bc94a8650a84935f4f20c3d8
MD5 50f9970f215b0401c7376138c295cb88
BLAKE2b-256 5ead36ddfc4a2d0fde88d7ec7f8ee4b85f7b3a4f0bda3e3272baecaca5492fb3

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-2.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c7d3549dafd2c061f45661101f5df91834597cd5288699b76b721fc6cb8ed79f
MD5 90b695a97b007cb9f44f1af0281c7d5e
BLAKE2b-256 5045a13781c6d1435885f2a2b5a312d3bd96940ab5edce785d25c04d645ef895

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-2.5.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 810b550733b029398561805787e259635e54854ea227e6fd909d44b1004d9150
MD5 c9163ebfb577300fefc1b197d796e58c
BLAKE2b-256 b0348fa16ba44e3e3bdb6c2a10a30b73d193ff1967d4565dc2d52eee78b40048

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.5.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f2173ed6e66b09d0bb3c3e33545eb15edb5a4b38d02d213374bb9d91b5455e95
MD5 43730329472a33724f6e06882759e836
BLAKE2b-256 afba0ac86ffc584af08f5b1bd46477bd8fce383be5e493dd98527f8965706255

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for lets_plot-2.5.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 103089dc0d3f3bcdb0601f9aefc0e8019b43ac24683e10fb306ef5c40b985221
MD5 725518fad0742dc92deb87de63e21cf0
BLAKE2b-256 725c6df1e7c2ec2e1dca43beed1a48402a5b9af29c07c297648879f20918b442

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.5.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c893f6b496053f79f4d0646837dbd35cf7616e81ff6b58cea7cd1e86c3e31c20
MD5 ad5849b69a2fcc8756c1be6f4bd619ee
BLAKE2b-256 abb7dcd44095020ee8c4e3adc079b46964f72d30520945daeafa32739b008ca8

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-2.5.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 05e858e7c965bdd184af5fd9b27969c6ee704020fdab23437df203366a8d6cc0
MD5 44e21e8433292efeb53398c3b9b2b0cc
BLAKE2b-256 5482aa28780c94a62272fd0f5b000b2e1ccc22c895e9aa94e2603be2d71d254f

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.5.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 541052a013c01ddf51a281f0d0c65ea60160c4b3de5b6f2af31df12a57f946e6
MD5 34c55cc578ab6125e0e2b4c53ba90ec7
BLAKE2b-256 15dd54008e53a633054898b4a95aabcaea6a9a991dd026242b54e700a48b93db

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.0-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for lets_plot-2.5.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 dd009c0bf7d40608984fbc3a2cb43332757364b5373b8aaf832b619dcda66599
MD5 f679cf3846e8a8e2d38728647fae96d7
BLAKE2b-256 aec54d2201d68de9b998be5ca819dec98410f2b55b9227934324e71558c45c48

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.5.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 809a418918416cf3ba59c3ca20f093a08f2dbccd36b7901c23f3abf0da63e26f
MD5 05528a7e21b119b7d716370ea26b2a4f
BLAKE2b-256 73760b7cf84762df981afc8260707ecc8e1c87141c11ec3ca8b8d343bd4b9963

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-2.5.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 41a9b2b5d96fb6d961fdca9bf077f4daded8c996db8a93802138560ddfcb19bb
MD5 79c2fab5c2bdf4e70c1a78e489254da0
BLAKE2b-256 b8454599f75084bfc69b5b27a7b6ef1a095d776f0f726a978fc34f45fc741551

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.0-cp36-cp36m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.5.0-cp36-cp36m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 1c05f2d8ff63a37c63636e71c3ecbccf98f1e30be2fa2008d6b3b617361810a8
MD5 d9ae93b8126282f6fe9872926b75146e
BLAKE2b-256 4cde369d630f241882422e1c0b2f4b72300e73be91ad87f5855e582c77d53d44

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page