An open source library for statistical plotting
Project description
Lets-Plot
Lets-Plot is an open-source plotting library for statistical data.
The design of Lets-Plot library is heavily influenced by Leland Wilkinson work The Grammar of Graphics describing the deep features that underlie all statistical graphics.
This grammar [...] is made up of a set of independent components that can be composed in many different ways. This makes [it] very powerful because you are not limited to a set of pre-specified graphics, but you can create new graphics that are precisely tailored for your problem.
- Hadley Wickham, "ggplot2: Elegant Graphics for Data Analysis"
We provide ggplot2-like plotting API for Python and Kotlin users.
Lets-Plot for Python
A bridge between R (ggplot2) and Python data visualization.
Learn more about Lets-Plot for Python installation and usage at the documentation website: https://lets-plot.org.
Lets-Plot for Kotlin
Lets-Plot for Kotlin adds plotting capabilities to scientific notebooks built on the Jupyter Kotlin Kermel.
You can use this API to embed charts into Kotlin/JVM and Kotlin/JS applications as well.
Lets-Plot for Kotlin at GitHub: https://github.com/JetBrains/lets-plot-kotlin.
"Lets-Plot in SciView" plugin
Scientific mode in PyCharm and in IntelliJ IDEA provides support for interactive scientific computing and data visualization.
Lets-Plot in SciView plugin adds support for interactive plotting to IntelliJ-based IDEs with the Scientific mode enabled.
Note: The Scientific mode is NOT available in communinty editions of JetBrains IDEs.
Also read:
What is new in 2.5.1
Mostly a maintenance release.
Nevertheless, few new features and improvements were added as well, among them:
- New rendering options in
geom_text(), geom_label()
geom_imshow()
is now supportingcmap
andextent
parameters (also,norm, vmin
andvmax
were fixed)
You will find more details about fixes and improvements in the CHANGELOG.md.
What is new in 2.5.0
-
Plot Theme
-
theme_bw()
See: example notebook.
-
Theme Flavors
Theme flavor offers an easy way to change the colors of all elements in a theme to match a specific color scheme.
In this release, we have added the following flavors:
- darcula
- solarized_light
- solarized_dark
- high_contrast_light
- high_contrast_dark
See: example notebook.
-
New parameters in
element_text()
size, family
(example notebook)hjust, vjust
for plot title, subtitle, caption, legend and axis titles (example notebook)margin
for plot title, subtitle, caption, axis titles and tick labels (example notebook)
-
-
New Plot Types
geom_label()
.See: example notebook.
-
Color Scales
Viridis color scales:
scale_color_viridis()
,scale_fill_viridis()
.Supported colormaps:
- magma
- inferno
- plasma
- viridis
- cividis
- turbo
- twilight
See: example notebook.
Change Log
See CHANGELOG.md for other changes and fixes.
License
Code and documentation released under the MIT license. Copyright © 2019-2022, JetBrains s.r.o.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
File details
Details for the file lets_plot-2.5.1-cp310-cp310-win_amd64.whl
.
File metadata
- Download URL: lets_plot-2.5.1-cp310-cp310-win_amd64.whl
- Upload date:
- Size: 2.7 MB
- Tags: CPython 3.10, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6fcebb6dd1cf9de75d22cab3334f44515a0165756e67f7a4cb7ea278392d674c |
|
MD5 | a636dde663bb3169fee530559b1765d0 |
|
BLAKE2b-256 | afc55039001f328690d97070755973f71c4da89253fae54dd3ea01755fe214c0 |
File details
Details for the file lets_plot-2.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: lets_plot-2.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 3.0 MB
- Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 861a0a73c92057a2e3e039a56b62da1373a07be69930cb76a1d562cf7335fa23 |
|
MD5 | 1d61b4c098e78d0537e787012d93a941 |
|
BLAKE2b-256 | c27a47b3e9db61cfdcfabc54f32c0021550ae89914c82875d67a7f4698298877 |
File details
Details for the file lets_plot-2.5.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl
.
File metadata
- Download URL: lets_plot-2.5.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl
- Upload date:
- Size: 3.2 MB
- Tags: CPython 3.10, manylinux: glibc 2.17+ ARM64, manylinux: glibc 2.24+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.8.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e971caf346fc3598cfb5d09142062bfea46558e0ae102aeecb757e2b1b1336b8 |
|
MD5 | eda55ede069ca5be52330162404f2f0e |
|
BLAKE2b-256 | c3c6440bdda04f0b17e6295be994066f44ba0959733e0c43be6ceef4c91c1fd6 |
File details
Details for the file lets_plot-2.5.1-cp310-cp310-macosx_11_0_arm64.whl
.
File metadata
- Download URL: lets_plot-2.5.1-cp310-cp310-macosx_11_0_arm64.whl
- Upload date:
- Size: 3.3 MB
- Tags: CPython 3.10, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7448a29ed80338517707b7656cd1b9f1f930c33f4ce1a7b5b0c00188adfb7d15 |
|
MD5 | bf971a94235ce903e5165db19beee193 |
|
BLAKE2b-256 | fe40e863076f4ffb555700ce7bc885168af99c295c05090d716394ed96649ce8 |
File details
Details for the file lets_plot-2.5.1-cp310-cp310-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: lets_plot-2.5.1-cp310-cp310-macosx_10_9_x86_64.whl
- Upload date:
- Size: 3.6 MB
- Tags: CPython 3.10, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6c0c685028b954a3c6366659398faede400b416f31edf772a3c72917d844330f |
|
MD5 | 883f2fd56cbc3762bf28ddd011ca79ec |
|
BLAKE2b-256 | 45bf21eb805ea357d97a02fc9a375e9775e1fde5fb3641579ea35d69e5246383 |
File details
Details for the file lets_plot-2.5.1-cp39-cp39-win_amd64.whl
.
File metadata
- Download URL: lets_plot-2.5.1-cp39-cp39-win_amd64.whl
- Upload date:
- Size: 2.7 MB
- Tags: CPython 3.9, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f9cc243a086c4f0ad910cdcf0f64056bec82c597c630e32f1c4232e1f8427615 |
|
MD5 | 774548ed84a3e5335167321151a442db |
|
BLAKE2b-256 | e52b241f522113c20d997ec0f174db3f0bbc68fc1c474e3edb1a2815b2287a7a |
File details
Details for the file lets_plot-2.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: lets_plot-2.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 3.0 MB
- Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 335046d025bf9bd20f77b70b732a95fde27ebc12c4541cc9859f53e25b3f595f |
|
MD5 | b4b14f4a7661650a204a8f1317a6ccdc |
|
BLAKE2b-256 | b0e6de675e9003cdd40254ee13467c64ad45ec1fd563f35d926ab86d2e615ce6 |
File details
Details for the file lets_plot-2.5.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl
.
File metadata
- Download URL: lets_plot-2.5.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl
- Upload date:
- Size: 3.2 MB
- Tags: CPython 3.9, manylinux: glibc 2.17+ ARM64, manylinux: glibc 2.24+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.8.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f238139747a5009bbfcccf555c4fd903d0ac1058879b1392cf59df310b941b96 |
|
MD5 | 928eb9ac654f17d24d3fed73055cf5d7 |
|
BLAKE2b-256 | 4d9b6cf1a38147034b7da28f286be4da247945d6f01c6d4418013b72c049a6cb |
File details
Details for the file lets_plot-2.5.1-cp39-cp39-macosx_11_0_arm64.whl
.
File metadata
- Download URL: lets_plot-2.5.1-cp39-cp39-macosx_11_0_arm64.whl
- Upload date:
- Size: 3.3 MB
- Tags: CPython 3.9, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2380bc4f9c97723c1ab92e48cbd72dc6c07c2fff1c1c7def10c3f294ef207a6b |
|
MD5 | 94561dc03f40fa0e5c15d8fc60b5cb06 |
|
BLAKE2b-256 | bf346127c107e514de79e1aad72bb4bf8ec0d2258b66baa341f1f7ed8d35fde2 |
File details
Details for the file lets_plot-2.5.1-cp39-cp39-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: lets_plot-2.5.1-cp39-cp39-macosx_10_9_x86_64.whl
- Upload date:
- Size: 3.6 MB
- Tags: CPython 3.9, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6d066a5e167a703bb85a5f07a1b36ffa43b1d5ff9067468ef0b6883a73891d6a |
|
MD5 | 2744e0fb8e6436f3a490803bea5e47cc |
|
BLAKE2b-256 | 0cdf1d3fe94c298cbbd008c7463fa0339d0150b6283f6c6f06cdd59a32c8128a |
File details
Details for the file lets_plot-2.5.1-cp38-cp38-win_amd64.whl
.
File metadata
- Download URL: lets_plot-2.5.1-cp38-cp38-win_amd64.whl
- Upload date:
- Size: 2.7 MB
- Tags: CPython 3.8, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f958b1543c08879fc6405718bb45e0e3a230268c59471b62cc158c669f02ed58 |
|
MD5 | f35a0fb4ab4a055948cc67894c3351e5 |
|
BLAKE2b-256 | 7219a35fc5ddff3bd3496a4d2c427126c961fb095b4f5806fa95bffa570f91bb |
File details
Details for the file lets_plot-2.5.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: lets_plot-2.5.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 3.0 MB
- Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 752612bfe25b8f023cd236c021943843f1d8471db9636fa60bd655c1c93ceff7 |
|
MD5 | 7701a0e6fb6b1d528f0a328a70d0fbe0 |
|
BLAKE2b-256 | 5d9b66e142f3618000f7f05eeda177a79ce8e63cd52edce6f2eb1c5a1c05eef9 |
File details
Details for the file lets_plot-2.5.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl
.
File metadata
- Download URL: lets_plot-2.5.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl
- Upload date:
- Size: 3.2 MB
- Tags: CPython 3.8, manylinux: glibc 2.17+ ARM64, manylinux: glibc 2.24+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.8.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 733947343f887f149d344ef3d5b0083058e874ffbc59a52d4838e19e874ad525 |
|
MD5 | adba3eea3eea8074a406b796ef6d9220 |
|
BLAKE2b-256 | 708a34d949537b1bc8cfd59a3ef973caa5a5acad1be969c3735bb7470bda14ee |
File details
Details for the file lets_plot-2.5.1-cp38-cp38-macosx_11_0_arm64.whl
.
File metadata
- Download URL: lets_plot-2.5.1-cp38-cp38-macosx_11_0_arm64.whl
- Upload date:
- Size: 3.3 MB
- Tags: CPython 3.8, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | af152e488a0e36e734ae5b46c7c6963834d17f735c45a545957311315c5b69f0 |
|
MD5 | 694912ef82cf21ac55316e75ec9ae5c8 |
|
BLAKE2b-256 | 437ba1af87a918d5c0019ae83b5d6c993a19d00427549a98eac85b10ab0d338e |
File details
Details for the file lets_plot-2.5.1-cp38-cp38-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: lets_plot-2.5.1-cp38-cp38-macosx_10_9_x86_64.whl
- Upload date:
- Size: 3.6 MB
- Tags: CPython 3.8, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e54289c428a22a6fec802f1e9ef126f6fb9e23ee7c426aa994d7d6769213aac6 |
|
MD5 | 52eb8fa2be531d1628c81a0cef117342 |
|
BLAKE2b-256 | 30bcab526e4be90e050cac4a90708bf2daac3a98b4b35147dc8dde4ff28a28e0 |
File details
Details for the file lets_plot-2.5.1-cp37-cp37m-win_amd64.whl
.
File metadata
- Download URL: lets_plot-2.5.1-cp37-cp37m-win_amd64.whl
- Upload date:
- Size: 2.7 MB
- Tags: CPython 3.7m, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5ece39266e3a4bfe247f641fc0279ec99bdebd74996877c25afb7493022cc5da |
|
MD5 | faf0717a82faf004fd621d3723cfd368 |
|
BLAKE2b-256 | ad3e69dc732deea1500018c1266e18bac2571dc8ef14410d328b41cbd5f89643 |
File details
Details for the file lets_plot-2.5.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: lets_plot-2.5.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 3.0 MB
- Tags: CPython 3.7m, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c3084bf4fd9a2252dff78c90bd202b8108679d466c9ee51fb207ab8fafdbfe6c |
|
MD5 | 85bd3c68cbcb270c56949eb74f992a74 |
|
BLAKE2b-256 | 94c6cfa293a40c1aa28413589bc0ef2e77f217a5c6e8191fc3989800629b63a3 |
File details
Details for the file lets_plot-2.5.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl
.
File metadata
- Download URL: lets_plot-2.5.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl
- Upload date:
- Size: 3.2 MB
- Tags: CPython 3.7m, manylinux: glibc 2.17+ ARM64, manylinux: glibc 2.24+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.8.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a7cb24e17bf86471b169f8a33a3d3ba047a31ac3ec809e57ba999641b74ed1a3 |
|
MD5 | 05a685b3bfe2523f1731c228aade2dbf |
|
BLAKE2b-256 | 876622e652b42bfead023077f0473510d547fb9c9182382819b1342102c80efd |
File details
Details for the file lets_plot-2.5.1-cp37-cp37m-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: lets_plot-2.5.1-cp37-cp37m-macosx_10_9_x86_64.whl
- Upload date:
- Size: 3.6 MB
- Tags: CPython 3.7m, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e71c56fe737f902eb843fea2525f3e233ee53e1db920ecd2d0dd74aa6f4d51cd |
|
MD5 | 4dc0fcc8cac64eca37dd15cce1003ad1 |
|
BLAKE2b-256 | 6cfa9f214872e8005b320cb32a240adab211b61dd040330371b5b0c4ebb928fa |
File details
Details for the file lets_plot-2.5.1-cp36-cp36m-win_amd64.whl
.
File metadata
- Download URL: lets_plot-2.5.1-cp36-cp36m-win_amd64.whl
- Upload date:
- Size: 2.7 MB
- Tags: CPython 3.6m, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4d3af0e062f3b5b07296a645045d3a30f3c18ccfcaf6e6916a04424faff01111 |
|
MD5 | c10e0e4379c45d113b781ec01a88682c |
|
BLAKE2b-256 | 641a564ecbf723da528c275452a66ca32cc4bb1f2f4ed3a25f10a90ab8a4fc4a |
File details
Details for the file lets_plot-2.5.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: lets_plot-2.5.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 3.0 MB
- Tags: CPython 3.6m, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5ca185c7612981b79ce991bab8b8092fc1816c93bd1222892c85b9a1a61d6112 |
|
MD5 | d9914f56c24917f3546f5c849af1e409 |
|
BLAKE2b-256 | 5b71febed8f5f072f7fa69b1e183d6fc4ec69c72c6be319903603c3397844de0 |
File details
Details for the file lets_plot-2.5.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl
.
File metadata
- Download URL: lets_plot-2.5.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl
- Upload date:
- Size: 3.2 MB
- Tags: CPython 3.6m, manylinux: glibc 2.17+ ARM64, manylinux: glibc 2.24+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.8.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f20936e26cd67ce061c9926b8c2f5f25ad8b8966b2e96cd056fc1b5f5dab3514 |
|
MD5 | b7e5b405b7027914b94230a0efab8dc3 |
|
BLAKE2b-256 | d6d86722daf232567819ffc69c322010947c97674fc394188e05c39e2ec4b016 |
File details
Details for the file lets_plot-2.5.1-cp36-cp36m-macosx_10_7_x86_64.whl
.
File metadata
- Download URL: lets_plot-2.5.1-cp36-cp36m-macosx_10_7_x86_64.whl
- Upload date:
- Size: 3.7 MB
- Tags: CPython 3.6m, macOS 10.7+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8d64482ba06f12ca07c1743160669c693495502aacbdad5e14ab73ed90c334f2 |
|
MD5 | 782174eb1cef6c35290fb91d47251f2e |
|
BLAKE2b-256 | 402ef6f3ce639f6982d22ab2999c90557a642e747c1fb7bd4830dde7a15c118a |