Skip to main content

An open source library for statistical plotting

Project description

Lets-Plot official JetBrains project

Couldn't load MIT license svg

Lets-Plot is an open-source plotting library for statistical data.

The design of Lets-Plot library is heavily influenced by Leland Wilkinson work The Grammar of Graphics describing the deep features that underlie all statistical graphics.

This grammar [...] is made up of a set of independent components that can be composed in many different ways. This makes [it] very powerful because you are not limited to a set of pre-specified graphics, but you can create new graphics that are precisely tailored for your problem.

We provide ggplot2-like plotting API for Python and Kotlin users.

Lets-Plot for Python

A bridge between R (ggplot2) and Python data visualization.

Learn more about Lets-Plot for Python installation and usage at the documentation website: https://lets-plot.org.

Lets-Plot for Kotlin

Lets-Plot for Kotlin adds plotting capabilities to scientific notebooks built on the Jupyter Kotlin Kermel.

You can use this API to embed charts into Kotlin/JVM and Kotlin/JS applications as well.

Lets-Plot for Kotlin at GitHub: https://github.com/JetBrains/lets-plot-kotlin.

"Lets-Plot in SciView" plugin

JetBrains Plugins JetBrains plugins

Scientific mode in PyCharm and in IntelliJ IDEA provides support for interactive scientific computing and data visualization.

Lets-Plot in SciView plugin adds support for interactive plotting to IntelliJ-based IDEs with the Scientific mode enabled.

Note: The Scientific mode is NOT available in communinty editions of JetBrains IDEs.

Also read:

What is new in 2.5.1

Mostly a maintenance release.

Nevertheless, few new features and improvements were added as well, among them:

  • New rendering options in geom_text(), geom_label()
  • geom_imshow() is now supporting cmap and extent parameters (also, norm, vmin and vmax were fixed)

You will find more details about fixes and improvements in the CHANGELOG.md.

What is new in 2.5.0

  • Plot Theme

    • theme_bw()

      See: example notebook.

    • Theme Flavors

      Theme flavor offers an easy way to change the colors of all elements in a theme to match a specific color scheme.

      In this release, we have added the following flavors:

      • darcula
      • solarized_light
      • solarized_dark
      • high_contrast_light
      • high_contrast_dark

    f-22c/images/theme_flavors.png

    See: example notebook.

    • New parameters in element_text()

  • New Plot Types

    geom_label().

    See: example notebook.

  • Color Scales

    Viridis color scales: scale_color_viridis(), scale_fill_viridis().

    Supported colormaps:

    • magma
    • inferno
    • plasma
    • viridis
    • cividis
    • turbo
    • twilight

    f-22c/images/viridis_plasma.png

    See: example notebook.

Change Log

See CHANGELOG.md for other changes and fixes.

License

Code and documentation released under the MIT license. Copyright © 2019-2022, JetBrains s.r.o.

Project details


Release history Release notifications | RSS feed

This version

2.5.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

lets_plot-2.5.1-cp310-cp310-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

lets_plot-2.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

lets_plot-2.5.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64 manylinux: glibc 2.24+ ARM64

lets_plot-2.5.1-cp310-cp310-macosx_11_0_arm64.whl (3.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

lets_plot-2.5.1-cp310-cp310-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

lets_plot-2.5.1-cp39-cp39-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

lets_plot-2.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

lets_plot-2.5.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64 manylinux: glibc 2.24+ ARM64

lets_plot-2.5.1-cp39-cp39-macosx_11_0_arm64.whl (3.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

lets_plot-2.5.1-cp39-cp39-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

lets_plot-2.5.1-cp38-cp38-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

lets_plot-2.5.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

lets_plot-2.5.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64 manylinux: glibc 2.24+ ARM64

lets_plot-2.5.1-cp38-cp38-macosx_11_0_arm64.whl (3.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

lets_plot-2.5.1-cp38-cp38-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

lets_plot-2.5.1-cp37-cp37m-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.7m Windows x86-64

lets_plot-2.5.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

lets_plot-2.5.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64 manylinux: glibc 2.24+ ARM64

lets_plot-2.5.1-cp37-cp37m-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

lets_plot-2.5.1-cp36-cp36m-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.6m Windows x86-64

lets_plot-2.5.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

lets_plot-2.5.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64 manylinux: glibc 2.24+ ARM64

lets_plot-2.5.1-cp36-cp36m-macosx_10_7_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.6m macOS 10.7+ x86-64

File details

Details for the file lets_plot-2.5.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for lets_plot-2.5.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6fcebb6dd1cf9de75d22cab3334f44515a0165756e67f7a4cb7ea278392d674c
MD5 a636dde663bb3169fee530559b1765d0
BLAKE2b-256 afc55039001f328690d97070755973f71c4da89253fae54dd3ea01755fe214c0

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 861a0a73c92057a2e3e039a56b62da1373a07be69930cb76a1d562cf7335fa23
MD5 1d61b4c098e78d0537e787012d93a941
BLAKE2b-256 c27a47b3e9db61cfdcfabc54f32c0021550ae89914c82875d67a7f4698298877

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-2.5.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 e971caf346fc3598cfb5d09142062bfea46558e0ae102aeecb757e2b1b1336b8
MD5 eda55ede069ca5be52330162404f2f0e
BLAKE2b-256 c3c6440bdda04f0b17e6295be994066f44ba0959733e0c43be6ceef4c91c1fd6

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-2.5.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7448a29ed80338517707b7656cd1b9f1f930c33f4ce1a7b5b0c00188adfb7d15
MD5 bf971a94235ce903e5165db19beee193
BLAKE2b-256 fe40e863076f4ffb555700ce7bc885168af99c295c05090d716394ed96649ce8

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.5.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6c0c685028b954a3c6366659398faede400b416f31edf772a3c72917d844330f
MD5 883f2fd56cbc3762bf28ddd011ca79ec
BLAKE2b-256 45bf21eb805ea357d97a02fc9a375e9775e1fde5fb3641579ea35d69e5246383

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: lets_plot-2.5.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.4

File hashes

Hashes for lets_plot-2.5.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f9cc243a086c4f0ad910cdcf0f64056bec82c597c630e32f1c4232e1f8427615
MD5 774548ed84a3e5335167321151a442db
BLAKE2b-256 e52b241f522113c20d997ec0f174db3f0bbc68fc1c474e3edb1a2815b2287a7a

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 335046d025bf9bd20f77b70b732a95fde27ebc12c4541cc9859f53e25b3f595f
MD5 b4b14f4a7661650a204a8f1317a6ccdc
BLAKE2b-256 b0e6de675e9003cdd40254ee13467c64ad45ec1fd563f35d926ab86d2e615ce6

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-2.5.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 f238139747a5009bbfcccf555c4fd903d0ac1058879b1392cf59df310b941b96
MD5 928eb9ac654f17d24d3fed73055cf5d7
BLAKE2b-256 4d9b6cf1a38147034b7da28f286be4da247945d6f01c6d4418013b72c049a6cb

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-2.5.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2380bc4f9c97723c1ab92e48cbd72dc6c07c2fff1c1c7def10c3f294ef207a6b
MD5 94561dc03f40fa0e5c15d8fc60b5cb06
BLAKE2b-256 bf346127c107e514de79e1aad72bb4bf8ec0d2258b66baa341f1f7ed8d35fde2

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.5.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6d066a5e167a703bb85a5f07a1b36ffa43b1d5ff9067468ef0b6883a73891d6a
MD5 2744e0fb8e6436f3a490803bea5e47cc
BLAKE2b-256 0cdf1d3fe94c298cbbd008c7463fa0339d0150b6283f6c6f06cdd59a32c8128a

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: lets_plot-2.5.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.4

File hashes

Hashes for lets_plot-2.5.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f958b1543c08879fc6405718bb45e0e3a230268c59471b62cc158c669f02ed58
MD5 f35a0fb4ab4a055948cc67894c3351e5
BLAKE2b-256 7219a35fc5ddff3bd3496a4d2c427126c961fb095b4f5806fa95bffa570f91bb

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.5.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 752612bfe25b8f023cd236c021943843f1d8471db9636fa60bd655c1c93ceff7
MD5 7701a0e6fb6b1d528f0a328a70d0fbe0
BLAKE2b-256 5d9b66e142f3618000f7f05eeda177a79ce8e63cd52edce6f2eb1c5a1c05eef9

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-2.5.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 733947343f887f149d344ef3d5b0083058e874ffbc59a52d4838e19e874ad525
MD5 adba3eea3eea8074a406b796ef6d9220
BLAKE2b-256 708a34d949537b1bc8cfd59a3ef973caa5a5acad1be969c3735bb7470bda14ee

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-2.5.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 af152e488a0e36e734ae5b46c7c6963834d17f735c45a545957311315c5b69f0
MD5 694912ef82cf21ac55316e75ec9ae5c8
BLAKE2b-256 437ba1af87a918d5c0019ae83b5d6c993a19d00427549a98eac85b10ab0d338e

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.5.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e54289c428a22a6fec802f1e9ef126f6fb9e23ee7c426aa994d7d6769213aac6
MD5 52eb8fa2be531d1628c81a0cef117342
BLAKE2b-256 30bcab526e4be90e050cac4a90708bf2daac3a98b4b35147dc8dde4ff28a28e0

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.1-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for lets_plot-2.5.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 5ece39266e3a4bfe247f641fc0279ec99bdebd74996877c25afb7493022cc5da
MD5 faf0717a82faf004fd621d3723cfd368
BLAKE2b-256 ad3e69dc732deea1500018c1266e18bac2571dc8ef14410d328b41cbd5f89643

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.5.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c3084bf4fd9a2252dff78c90bd202b8108679d466c9ee51fb207ab8fafdbfe6c
MD5 85bd3c68cbcb270c56949eb74f992a74
BLAKE2b-256 94c6cfa293a40c1aa28413589bc0ef2e77f217a5c6e8191fc3989800629b63a3

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-2.5.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 a7cb24e17bf86471b169f8a33a3d3ba047a31ac3ec809e57ba999641b74ed1a3
MD5 05a685b3bfe2523f1731c228aade2dbf
BLAKE2b-256 876622e652b42bfead023077f0473510d547fb9c9182382819b1342102c80efd

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.5.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e71c56fe737f902eb843fea2525f3e233ee53e1db920ecd2d0dd74aa6f4d51cd
MD5 4dc0fcc8cac64eca37dd15cce1003ad1
BLAKE2b-256 6cfa9f214872e8005b320cb32a240adab211b61dd040330371b5b0c4ebb928fa

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.1-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for lets_plot-2.5.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 4d3af0e062f3b5b07296a645045d3a30f3c18ccfcaf6e6916a04424faff01111
MD5 c10e0e4379c45d113b781ec01a88682c
BLAKE2b-256 641a564ecbf723da528c275452a66ca32cc4bb1f2f4ed3a25f10a90ab8a4fc4a

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.5.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5ca185c7612981b79ce991bab8b8092fc1816c93bd1222892c85b9a1a61d6112
MD5 d9914f56c24917f3546f5c849af1e409
BLAKE2b-256 5b71febed8f5f072f7fa69b1e183d6fc4ec69c72c6be319903603c3397844de0

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-2.5.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 f20936e26cd67ce061c9926b8c2f5f25ad8b8966b2e96cd056fc1b5f5dab3514
MD5 b7e5b405b7027914b94230a0efab8dc3
BLAKE2b-256 d6d86722daf232567819ffc69c322010947c97674fc394188e05c39e2ec4b016

See more details on using hashes here.

File details

Details for the file lets_plot-2.5.1-cp36-cp36m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.5.1-cp36-cp36m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 8d64482ba06f12ca07c1743160669c693495502aacbdad5e14ab73ed90c334f2
MD5 782174eb1cef6c35290fb91d47251f2e
BLAKE2b-256 402ef6f3ce639f6982d22ab2999c90557a642e747c1fb7bd4830dde7a15c118a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page