Skip to main content

An open source library for statistical plotting

Project description

Lets-Plot official JetBrains project

Couldn't load MIT license svg

Lets-Plot is an open-source plotting library for statistical data.

The design of Lets-Plot library is heavily influenced by Leland Wilkinson work The Grammar of Graphics describing the deep features that underlie all statistical graphics.

This grammar [...] is made up of a set of independent components that can be composed in many different ways. This makes [it] very powerful because you are not limited to a set of pre-specified graphics, but you can create new graphics that are precisely tailored for your problem.

We provide ggplot2-like plotting API for Python and Kotlin users.

Lets-Plot for Python

A bridge between R (ggplot2) and Python data visualization.

Learn more about Lets-Plot for Python installation and usage at the documentation website: https://lets-plot.org.

Lets-Plot for Kotlin

Lets-Plot for Kotlin adds plotting capabilities to scientific notebooks built on the Jupyter Kotlin Kermel.

You can use this API to embed charts into Kotlin/JVM and Kotlin/JS applications as well.

Lets-Plot for Kotlin at GitHub: https://github.com/JetBrains/lets-plot-kotlin.

"Lets-Plot in SciView" plugin

JetBrains Plugins JetBrains plugins

Scientific mode in PyCharm and in IntelliJ IDEA provides support for interactive scientific computing and data visualization.

Lets-Plot in SciView plugin adds support for interactive plotting to IntelliJ-based IDEs with the Scientific mode enabled.

Note: The Scientific mode is NOT available in communinty editions of JetBrains IDEs.

Also read:

What is new in 2.5.1

Mostly a maintenance release.

Nevertheless, few new features and improvements were added as well, among them:

  • New rendering options in geom_text(), geom_label()
  • geom_imshow() is now supporting cmap and extent parameters (also, norm, vmin and vmax were fixed)

You will find more details about fixes and improvements in the CHANGELOG.md.

What is new in 2.5.0

  • Plot Theme

    • theme_bw()

      See: example notebook.

    • Theme Flavors

      Theme flavor offers an easy way to change the colors of all elements in a theme to match a specific color scheme.

      In this release, we have added the following flavors:

      • darcula
      • solarized_light
      • solarized_dark
      • high_contrast_light
      • high_contrast_dark

    f-22c/images/theme_flavors.png

    See: example notebook.

    • New parameters in element_text()

  • New Plot Types

    geom_label().

    See: example notebook.

  • Color Scales

    Viridis color scales: scale_color_viridis(), scale_fill_viridis().

    Supported colormaps:

    • magma
    • inferno
    • plasma
    • viridis
    • cividis
    • turbo
    • twilight

    f-22c/images/viridis_plasma.png

    See: example notebook.

Change Log

See CHANGELOG.md for other changes and fixes.

License

Code and documentation released under the MIT license. Copyright © 2019-2022, JetBrains s.r.o.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

lets_plot-3.0.0rc1-cp310-cp310-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

lets_plot-3.0.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

lets_plot-3.0.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64 manylinux: glibc 2.24+ ARM64

lets_plot-3.0.0rc1-cp310-cp310-macosx_11_0_arm64.whl (3.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

lets_plot-3.0.0rc1-cp310-cp310-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

lets_plot-3.0.0rc1-cp39-cp39-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

lets_plot-3.0.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

lets_plot-3.0.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64 manylinux: glibc 2.24+ ARM64

lets_plot-3.0.0rc1-cp39-cp39-macosx_11_0_arm64.whl (3.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

lets_plot-3.0.0rc1-cp39-cp39-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

lets_plot-3.0.0rc1-cp38-cp38-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

lets_plot-3.0.0rc1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

lets_plot-3.0.0rc1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64 manylinux: glibc 2.24+ ARM64

lets_plot-3.0.0rc1-cp38-cp38-macosx_11_0_arm64.whl (3.4 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

lets_plot-3.0.0rc1-cp38-cp38-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

lets_plot-3.0.0rc1-cp37-cp37m-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

lets_plot-3.0.0rc1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

lets_plot-3.0.0rc1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64 manylinux: glibc 2.24+ ARM64

lets_plot-3.0.0rc1-cp37-cp37m-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file lets_plot-3.0.0rc1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for lets_plot-3.0.0rc1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2dc2f7a35e38ac29c1ddc27be07eefd9787a9472011c8018c89a354ceb3f6010
MD5 537aab21afb836f124d4721e3bccebd5
BLAKE2b-256 5a982a713e109165f591bafb0a5404fd594b736e1d03ec293a06cc7dd8a33bee

See more details on using hashes here.

File details

Details for the file lets_plot-3.0.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-3.0.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 144218e6081559b83688b025f96cc4cdae2cd29aa1b697d7fd204adfaf787f65
MD5 ab3e301b043adabba825267dc6195ed9
BLAKE2b-256 50500107a9eef96c6dc4d04a76c664c693bd6298ee70bb902f9c6cf7e0152f87

See more details on using hashes here.

File details

Details for the file lets_plot-3.0.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-3.0.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 754b9d3dcdd42e1af5c032429febc4598c21d2617517bb46a12b518f405a26ac
MD5 20bc1bc21481a91edc0ae0b08eb3d35c
BLAKE2b-256 5e02b9b925a3a8f6118ba86498a1c826c2573d0466e51405a770a357b26b289b

See more details on using hashes here.

File details

Details for the file lets_plot-3.0.0rc1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-3.0.0rc1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e9669e21c8c6b00a49fae004ba1e7eb3ecc185074cbeeb96d815e9b23353e585
MD5 b6b6b3590e2b2f28cfff0fc295c2f394
BLAKE2b-256 33bc06002a207c7789c7c89885ebbdb181d182517df0764b7f4cc5b454d5904e

See more details on using hashes here.

File details

Details for the file lets_plot-3.0.0rc1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-3.0.0rc1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 24e0747e200273d4a251bed7d11f224fd191dbf0dda515c66060e0440ba43cda
MD5 48a7319d0b76746efa8407968846033a
BLAKE2b-256 b851c8acc7e0b6abbcc4601f16624e7c92373e3fcca05280b45d2d5e8c992103

See more details on using hashes here.

File details

Details for the file lets_plot-3.0.0rc1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for lets_plot-3.0.0rc1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a6519bff81da80c53c4d878ad28f283cfe18fe14b465b99506bded0566e833a2
MD5 639a948913eececdb65b7787a5a40989
BLAKE2b-256 8227230b0e2ffb68d0fa953bcbe04e49e97aa0ff79234232624f16fc90c5221f

See more details on using hashes here.

File details

Details for the file lets_plot-3.0.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-3.0.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7d09681841d0e2ee1a69ae93170d928aaa02769cf7012dc981c926073f95ae80
MD5 7e21934b645059ca3b803786060dd8f0
BLAKE2b-256 ed8bb2c5f15320bb50c3c34e98313485276494a576d45bf61c64f695a338320f

See more details on using hashes here.

File details

Details for the file lets_plot-3.0.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-3.0.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 cbc78271dc38c95cb50c47c4a246bcedb6c1cc4647627554744abd633c68164a
MD5 20365771883ad57905a38b28e79c7b94
BLAKE2b-256 af8c1d5b9b49442bc6f3c1e049700a8aa445f1cbd97c99d5ad2ff61cd66024bc

See more details on using hashes here.

File details

Details for the file lets_plot-3.0.0rc1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-3.0.0rc1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 aa933794376350d91711fcbb7aec242f9f35c05f422c6385ded8848a7da1f141
MD5 e1c0288c7eb8a2823c718db424ca7549
BLAKE2b-256 7a084407d8673ba354662a9af35745f32b23f33489d55ba2ffdaa99e1f03ccd0

See more details on using hashes here.

File details

Details for the file lets_plot-3.0.0rc1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-3.0.0rc1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b3b8c7fdfe035de19064cfc6f946f8e1c2bd54c3973d6e12ca145bffb7a6eae3
MD5 8c3d237e30da5e97fce4ddb44fe1a728
BLAKE2b-256 d82b9743edcc100f8ab4bb383f69e7331913516564fd730b9c26ad3822d0fb7d

See more details on using hashes here.

File details

Details for the file lets_plot-3.0.0rc1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for lets_plot-3.0.0rc1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 7e174041305c7261a0037755606663d00d92f2de16f1d38b7f5f478b6717bb82
MD5 b507c5b33ed34fea00c183fbb8093f6f
BLAKE2b-256 55d3626c0c8b6927547275500768ab3e90e72e27bd5bb494a1574eb9988dc597

See more details on using hashes here.

File details

Details for the file lets_plot-3.0.0rc1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-3.0.0rc1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8fe96b36dbf16740b1d6f7efeb0626908a7be49709979e39e4e5c91c753e912d
MD5 00b17fbc3f149b120787fd75035413f4
BLAKE2b-256 3cf46c3b4471f62ebbb52c20da0740485647afc8a1192c2a40f3d086eb724379

See more details on using hashes here.

File details

Details for the file lets_plot-3.0.0rc1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-3.0.0rc1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 a3d8781c5622c71c37567bde57e326ab6144881706cba2de50dafdfdb4df9910
MD5 c438e9e47336395f9256c1e51c4289cd
BLAKE2b-256 2f7ccbe9cdc19547706f50c718ec80e34d4019ea007881fafd4db94c3d81f25c

See more details on using hashes here.

File details

Details for the file lets_plot-3.0.0rc1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-3.0.0rc1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 61e076a5b5698450ed33b443189441760fd59d84fb3ae34553460b854507b485
MD5 e16a5602783b037fb80941bad253ddbf
BLAKE2b-256 288fc6e436f3d2e4fbdbb9128a3505bcdd337ec54fb89fdf9d0ee5cad9b04cc9

See more details on using hashes here.

File details

Details for the file lets_plot-3.0.0rc1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-3.0.0rc1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1ababa21bc5de422527716c7eb4dba32f1893f785341834706bf6814163db184
MD5 e106212875a1ac8e02b3b2639ee568f4
BLAKE2b-256 48a6dc0bd76388eca2c67ae98827023e05a9fece3456f6181439bfee6e12b4d2

See more details on using hashes here.

File details

Details for the file lets_plot-3.0.0rc1-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for lets_plot-3.0.0rc1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 79503ac0c313a699759ce2f5e8b461c606352d8318d1963c7902926f808b82a7
MD5 4b67a760d2a7a33428ec7c4cd046d957
BLAKE2b-256 925c69a44b5ba4f5f562132e21db0b83083951bcc62f657f9340c1b62a3b2064

See more details on using hashes here.

File details

Details for the file lets_plot-3.0.0rc1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-3.0.0rc1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1f447fe66b9615dd7fde5547a5b86963ed3f742f308e54a5239c0eb67d60eaf3
MD5 958f1fa5a5c87c130de6b8fd3b8311c4
BLAKE2b-256 9a2cb597cd4c97c4ee8c9066205b21d690e4ee304362471b8e83b354959639a2

See more details on using hashes here.

File details

Details for the file lets_plot-3.0.0rc1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-3.0.0rc1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 54405ab641b056cf7aa4f2bd2b66a144f08b2dd5909e8d5ad2df21d12634a970
MD5 e2e0204b4c940894ae96415fd42e7aec
BLAKE2b-256 d0605a065be0c965e1c93ddf9fc49d83bd8195fd2d831f1f47f647d6c39ea7de

See more details on using hashes here.

File details

Details for the file lets_plot-3.0.0rc1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-3.0.0rc1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 198661b923df4f43b74028962614c3fc1b08ab3e44ce4830ae9456c65c0ae5b1
MD5 c9bfd03a0fa96ea5460c2d428184aa8b
BLAKE2b-256 28eb8dc05495c8b2c034087d10b902860ae3a9fd56dc50e0c73dc735a7969820

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page