An open source library for statistical plotting
Project description
Lets-Plot
Lets-Plot is an open-source plotting library for statistical data.
The design of Lets-Plot library is heavily influenced by Leland Wilkinson work The Grammar of Graphics describing the deep features that underlie all statistical graphics.
This grammar [...] is made up of a set of independent components that can be composed in many different ways. This makes [it] very powerful because you are not limited to a set of pre-specified graphics, but you can create new graphics that are precisely tailored for your problem.
- Hadley Wickham, "ggplot2: Elegant Graphics for Data Analysis"
We provide ggplot2-like plotting API for Python and Kotlin users.
Lets-Plot for Python
A bridge between R (ggplot2) and Python data visualization.
To learn more: lets-plot.org.
Lets-Plot for Kotlin
Lets-Plot for Kotlin adds plotting capabilities to scientific notebooks built on the Jupyter Kotlin Kernel.
You can use this API to embed charts into Kotlin/JVM and Kotlin/JS applications as well.
Lets-Plot for Kotlin at GitHub: https://github.com/JetBrains/lets-plot-kotlin.
"Lets-Plot in SciView" plugin
Scientific mode in PyCharm and in IntelliJ IDEA provides support for interactive scientific computing and data visualization.
Lets-Plot in SciView plugin adds support for interactive plotting to IntelliJ-based IDEs with the Scientific mode enabled.
Note: The Scientific mode is NOT available in communinty editions of JetBrains IDEs.
Also read:
What is new in 3.2.0
Aesthetics stroke
and linewidth
See: example notebook.
See also geom_lollipop()
example below.
Lollipop Plot
See: example notebook.
Horizontal error bars and vertical "dodge"
See: example notebook.
Multi-line Labels in Legends
See: example notebook.
Colorbar in geom_imshow()
Change Log
See CHANGELOG.md for other changes and fixes.
Code of Conduct
This project and the corresponding community are governed by the JetBrains Open Source and Community Code of Conduct. Please make sure you read it.
License
Code and documentation released under the MIT license. Copyright © 2019-2023, JetBrains s.r.o.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
File details
Details for the file lets_plot-3.2.0-cp311-cp311-win_amd64.whl
.
File metadata
- Download URL: lets_plot-3.2.0-cp311-cp311-win_amd64.whl
- Upload date:
- Size: 3.6 MB
- Tags: CPython 3.11, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.7.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 45ad337cf903ae75d2e97064309a222a7033029479cadd2b3d7b16eaa536f739 |
|
MD5 | 5b5af3681791497d7d6927562b7f90d5 |
|
BLAKE2b-256 | 04ebc8846601594e079c9ebc516aa0c56cdf7ba7d47bbc7a2bfa605ab88c2815 |
File details
Details for the file lets_plot-3.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: lets_plot-3.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 2.8 MB
- Tags: CPython 3.11, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 331181914f5e43d5128d32036ddbb981928e77b5e2afe803515160d9825ea9e2 |
|
MD5 | c40dea8573d529e42d138fb59e3888a1 |
|
BLAKE2b-256 | e336f4b918bc28ef12610031029d7642be94ce12400c54abbb802d1d6391f0dd |
File details
Details for the file lets_plot-3.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
.
File metadata
- Download URL: lets_plot-3.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- Upload date:
- Size: 2.7 MB
- Tags: CPython 3.11, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9502f795bf5135a248be63f329ef4df69fd45c95200a2ff342b8ecb991ea0f17 |
|
MD5 | a1a129d5d570634ce07b60dd75907bb9 |
|
BLAKE2b-256 | e5d5a82725d4c7be0fd01459a0775c62bb511579372e810d7372165223a2304d |
File details
Details for the file lets_plot-3.2.0-cp311-cp311-macosx_11_0_arm64.whl
.
File metadata
- Download URL: lets_plot-3.2.0-cp311-cp311-macosx_11_0_arm64.whl
- Upload date:
- Size: 3.6 MB
- Tags: CPython 3.11, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8e727c415d6623c354df59026d7e7719b4ef19ac05d872060134deb557aada67 |
|
MD5 | 0ba5cd4033fbef7010fb03e943194b72 |
|
BLAKE2b-256 | 7c2e614610b754c0d01c15e88ed887b4c28d7fb938ef281b1e66e1b8d0792f93 |
File details
Details for the file lets_plot-3.2.0-cp311-cp311-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: lets_plot-3.2.0-cp311-cp311-macosx_10_9_x86_64.whl
- Upload date:
- Size: 3.8 MB
- Tags: CPython 3.11, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ac4ca344cb5acac06bba69eea1394284241619bb21f9e5da824ee03c96f74b89 |
|
MD5 | a8dffd57ecc83bf56107f69e3187a1bc |
|
BLAKE2b-256 | c19028515cc7ca1624f3a8c00e43b23fccd03f73771b15c583fb0695472ba0d0 |
File details
Details for the file lets_plot-3.2.0-cp310-cp310-win_amd64.whl
.
File metadata
- Download URL: lets_plot-3.2.0-cp310-cp310-win_amd64.whl
- Upload date:
- Size: 3.6 MB
- Tags: CPython 3.10, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.7.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cfb2365eae40b5485a42749e59f58ed1bb4e609088cb4227117c128736c80b74 |
|
MD5 | 8039025007ba0a571934d7d814a26113 |
|
BLAKE2b-256 | 80cf8accd78f54e39efab47e939095da320be4d9f1dbb28c5776a581812e0e1f |
File details
Details for the file lets_plot-3.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: lets_plot-3.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 2.8 MB
- Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 97102fd7d240288ed020514d932838a24677cdac621027bd726e19c617fb57ea |
|
MD5 | f30aeb9d6003cae600f12ab43d2845c7 |
|
BLAKE2b-256 | 6ae528cfbf92bccdd793fca719fd2abed4e2d076b49d80b77aeecb47b7e47eea |
File details
Details for the file lets_plot-3.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
.
File metadata
- Download URL: lets_plot-3.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- Upload date:
- Size: 2.7 MB
- Tags: CPython 3.10, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4f35baaac34e9224ab61ce04cf8ba201b5fdee849dc4b09bc88efbf958dd6c82 |
|
MD5 | 0bdf7e4eb44fc873fc3d56a25edc4c7b |
|
BLAKE2b-256 | b30412a7b80a3a00af677ef66393c125341cb0a50df02d1fbdf3fd1f22ad42fe |
File details
Details for the file lets_plot-3.2.0-cp310-cp310-macosx_11_0_arm64.whl
.
File metadata
- Download URL: lets_plot-3.2.0-cp310-cp310-macosx_11_0_arm64.whl
- Upload date:
- Size: 3.6 MB
- Tags: CPython 3.10, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8d6dad2da5e01d43a2e5bae05237b6e64f2eb25a3b92c6a209f26c640381ce3f |
|
MD5 | f0021ace5171b2855bf7fb4707a79a37 |
|
BLAKE2b-256 | 5207e3ed39a0244f67c1d47bf3855b6e0ea04374dbe955f111e9847ac934ed0d |
File details
Details for the file lets_plot-3.2.0-cp310-cp310-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: lets_plot-3.2.0-cp310-cp310-macosx_10_9_x86_64.whl
- Upload date:
- Size: 3.8 MB
- Tags: CPython 3.10, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9b43930b771fb772f86b84a17c12008d138e3c35283f0f393cad734e58b0511c |
|
MD5 | 5de200c01050225608d8f4246a5f7a93 |
|
BLAKE2b-256 | 5508377f24d86e77fa061ab202c22f8516fe231331e7ce6d7cda7f3d3d0c27d0 |
File details
Details for the file lets_plot-3.2.0-cp39-cp39-win_amd64.whl
.
File metadata
- Download URL: lets_plot-3.2.0-cp39-cp39-win_amd64.whl
- Upload date:
- Size: 3.6 MB
- Tags: CPython 3.9, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.7.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a5fc4b51a70010a6820c3781ab155f6d49a661ee602e40d8e1e619f3d020bc62 |
|
MD5 | 25304bc31817cb9c43ac13d3a43cf456 |
|
BLAKE2b-256 | 5a0d421cb4cbc69f24e8a3a63cfa5b2306a8b65a89a4a10d282c3012a79d51ef |
File details
Details for the file lets_plot-3.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: lets_plot-3.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 2.8 MB
- Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 88ab1b013a3954a53935953b81916fea66417a313e6f1fe638b73cd14d2d0b9e |
|
MD5 | 3ed5c2636a5095645432535c33d4b521 |
|
BLAKE2b-256 | deef375f1838e821de70c238d66f23ace9dd20773845ea5230874507c883a22c |
File details
Details for the file lets_plot-3.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
.
File metadata
- Download URL: lets_plot-3.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- Upload date:
- Size: 2.7 MB
- Tags: CPython 3.9, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1928aa0d79f2cccfb8ae734686b8f9f2acd109c4d7bf282f1ac14f83ee759fe5 |
|
MD5 | eaf9e2f47f66b9d8f0c602e55c177361 |
|
BLAKE2b-256 | 70dec18d895185b4ef0003c3fe8dfab9f21a175d06f015f5191eceed2ab84a87 |
File details
Details for the file lets_plot-3.2.0-cp39-cp39-macosx_11_0_arm64.whl
.
File metadata
- Download URL: lets_plot-3.2.0-cp39-cp39-macosx_11_0_arm64.whl
- Upload date:
- Size: 3.6 MB
- Tags: CPython 3.9, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ea7f6f47a455e424a513b68201f93fefcdfe13c87889d71aab29cf77081aa125 |
|
MD5 | ddad8d721fb7b2fe11e074f184266568 |
|
BLAKE2b-256 | d322ae9d3d49ac309cbb3c17511c66a9175bc0b87caca436f3fb1c98f20512fe |
File details
Details for the file lets_plot-3.2.0-cp39-cp39-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: lets_plot-3.2.0-cp39-cp39-macosx_10_9_x86_64.whl
- Upload date:
- Size: 3.8 MB
- Tags: CPython 3.9, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9b77f1cba6a2929b33463e59759ee8166e7b4c923c221bde3c2ce3865d7d4c5a |
|
MD5 | bc2910f3caebb4342c990233c43ad2d6 |
|
BLAKE2b-256 | f47711f0ac1e479674d70009b35cc6f5cbe98e19987f5ef3dfab96613ada310b |
File details
Details for the file lets_plot-3.2.0-cp38-cp38-win_amd64.whl
.
File metadata
- Download URL: lets_plot-3.2.0-cp38-cp38-win_amd64.whl
- Upload date:
- Size: 3.6 MB
- Tags: CPython 3.8, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.7.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7a4d0331c8457d07dadebb759cfd440a7e4831eb7f9c2f3e4fa592234bf16b05 |
|
MD5 | eaabd552365ab7d971c923f80c7ecd9b |
|
BLAKE2b-256 | 0955acadc157598280fe7ab240ce2dd6f5a2aa70e07315d5fbf2d77cd440c033 |
File details
Details for the file lets_plot-3.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: lets_plot-3.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 2.8 MB
- Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4e04cd25597ef8ae5c67968c11e2412ad0f5f76c52169a82fc647e4546b3b128 |
|
MD5 | f087b34c70d6e824fae23e84e2543563 |
|
BLAKE2b-256 | 74b1c2c19a5a6f3294119cc2e80a826c1bffca1e0341cab5b0d1b027822d1791 |
File details
Details for the file lets_plot-3.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
.
File metadata
- Download URL: lets_plot-3.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- Upload date:
- Size: 2.7 MB
- Tags: CPython 3.8, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 11cecb1887e7cdc1d491d8054710487205fe3f9da0a44b5f2d6033fffeab6d99 |
|
MD5 | fc563b5e0c34b448d34e4b08fa96c2f1 |
|
BLAKE2b-256 | a4bed48eacb5d7e90aef0337829609901b48795d79843f548eb8e5e0c87d23b1 |
File details
Details for the file lets_plot-3.2.0-cp38-cp38-macosx_11_0_arm64.whl
.
File metadata
- Download URL: lets_plot-3.2.0-cp38-cp38-macosx_11_0_arm64.whl
- Upload date:
- Size: 3.6 MB
- Tags: CPython 3.8, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4dcdfc83f69c9b51248daee6c990b6018fb58966140e4a7954e5f41b414bab99 |
|
MD5 | a6868479777ef1017ff6b52d9f1a6c1b |
|
BLAKE2b-256 | fd1a0c6152921966f373d8df45176a13d282095dc3245e6116d1e39b413c8074 |
File details
Details for the file lets_plot-3.2.0-cp38-cp38-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: lets_plot-3.2.0-cp38-cp38-macosx_10_9_x86_64.whl
- Upload date:
- Size: 3.8 MB
- Tags: CPython 3.8, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c88cef60d9a27343b75ee9cd32a07b4ed53f8cfe1ee3357de7e455db5379e067 |
|
MD5 | 885e53fceab6da25661a4e86b64e549a |
|
BLAKE2b-256 | e01ebd2b3cf9ecefaf87eee2fad448d37802376e8f57987f6ccd5452646619db |
File details
Details for the file lets_plot-3.2.0-cp37-cp37m-win_amd64.whl
.
File metadata
- Download URL: lets_plot-3.2.0-cp37-cp37m-win_amd64.whl
- Upload date:
- Size: 3.6 MB
- Tags: CPython 3.7m, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.7.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 183aed11269c8b11e37a732d90c6239c08feecdd3dfdbf2e7ff14e70a951047e |
|
MD5 | 16235d3bbe338296ef8101d639849b67 |
|
BLAKE2b-256 | 60d7a522e3f386100baa363a3a3c2d0465cf234e58114f511426a53865b4bf54 |
File details
Details for the file lets_plot-3.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: lets_plot-3.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 2.8 MB
- Tags: CPython 3.7m, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e97dbf89ec52d246ec2601343e704af6d3315c3dbe628e071ca2fd67c3f4e070 |
|
MD5 | cb76af37090ca91399feb4275842aff0 |
|
BLAKE2b-256 | db08e34b89e392eff6ae79a6754587d4dd84b70791850f9b33997b7918520202 |
File details
Details for the file lets_plot-3.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
.
File metadata
- Download URL: lets_plot-3.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- Upload date:
- Size: 2.7 MB
- Tags: CPython 3.7m, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 881c924bf3d12b54541aca77f536b49f2d219e130b3ec2a755d9339844b88ff8 |
|
MD5 | d2c3486ba89946e39512249e6ba7d969 |
|
BLAKE2b-256 | 9e8c3679a16093f92b541786b884bdae47a2dad590362e27276e8431e84cf0e5 |
File details
Details for the file lets_plot-3.2.0-cp37-cp37m-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: lets_plot-3.2.0-cp37-cp37m-macosx_10_9_x86_64.whl
- Upload date:
- Size: 3.8 MB
- Tags: CPython 3.7m, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 19b337a08d0b38f3a6404bcbe302e686d4922d2a8cd0aab257bef957cb8eb94d |
|
MD5 | ff20ca14063f8c87eaffe7f3dead1cc8 |
|
BLAKE2b-256 | cea67ec846194d24a0c29c2b94d4a80053d8bac869abc6a13d9cfb7015f000fb |