Skip to main content

An open source library for statistical plotting

Project description

Lets-Plot official JetBrains project

Couldn't load MIT license svg

Lets-Plot is an open-source plotting library for statistical data.

The design of Lets-Plot library is heavily influenced by Leland Wilkinson work The Grammar of Graphics describing the deep features that underlie all statistical graphics.

This grammar [...] is made up of a set of independent components that can be composed in many different ways. This makes [it] very powerful because you are not limited to a set of pre-specified graphics, but you can create new graphics that are precisely tailored for your problem.

We provide ggplot2-like plotting API for Python and Kotlin users.

Lets-Plot for Python

A bridge between R (ggplot2) and Python data visualization.

To learn more: lets-plot.org.

Lets-Plot for Kotlin

Lets-Plot for Kotlin adds plotting capabilities to scientific notebooks built on the Jupyter Kotlin Kernel.

You can use this API to embed charts into Kotlin/JVM and Kotlin/JS applications as well.

Lets-Plot for Kotlin at GitHub: https://github.com/JetBrains/lets-plot-kotlin.

"Lets-Plot in SciView" plugin

JetBrains Plugins JetBrains plugins

Scientific mode in PyCharm and in IntelliJ IDEA provides support for interactive scientific computing and data visualization.

Lets-Plot in SciView plugin adds support for interactive plotting to IntelliJ-based IDEs with the Scientific mode enabled.

Note: The Scientific mode is NOT available in communinty editions of JetBrains IDEs.

Also read:

What is new in 3.2.0

Aesthetics stroke and linewidth


f-23b/images/stroke.png

See: example notebook.

See also geom_lollipop() example below.

Lollipop Plot


f-23b/images/lollipop.png

See: example notebook.

Horizontal error bars and vertical "dodge"

See: example notebook.

Multi-line Labels in Legends

See: example notebook.

Colorbar in geom_imshow()


f-23b/images/imshow_legend.png

Change Log

See CHANGELOG.md for other changes and fixes.

Code of Conduct

This project and the corresponding community are governed by the JetBrains Open Source and Community Code of Conduct. Please make sure you read it.

License

Code and documentation released under the MIT license. Copyright © 2019-2023, JetBrains s.r.o.

Project details


Release history Release notifications | RSS feed

This version

3.2.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

lets_plot-3.2.0-cp311-cp311-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

lets_plot-3.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

lets_plot-3.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

lets_plot-3.2.0-cp311-cp311-macosx_11_0_arm64.whl (3.6 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

lets_plot-3.2.0-cp311-cp311-macosx_10_9_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

lets_plot-3.2.0-cp310-cp310-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

lets_plot-3.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

lets_plot-3.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

lets_plot-3.2.0-cp310-cp310-macosx_11_0_arm64.whl (3.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

lets_plot-3.2.0-cp310-cp310-macosx_10_9_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

lets_plot-3.2.0-cp39-cp39-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

lets_plot-3.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

lets_plot-3.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

lets_plot-3.2.0-cp39-cp39-macosx_11_0_arm64.whl (3.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

lets_plot-3.2.0-cp39-cp39-macosx_10_9_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

lets_plot-3.2.0-cp38-cp38-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

lets_plot-3.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

lets_plot-3.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

lets_plot-3.2.0-cp38-cp38-macosx_11_0_arm64.whl (3.6 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

lets_plot-3.2.0-cp38-cp38-macosx_10_9_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

lets_plot-3.2.0-cp37-cp37m-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

lets_plot-3.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

lets_plot-3.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

lets_plot-3.2.0-cp37-cp37m-macosx_10_9_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file lets_plot-3.2.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for lets_plot-3.2.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 45ad337cf903ae75d2e97064309a222a7033029479cadd2b3d7b16eaa536f739
MD5 5b5af3681791497d7d6927562b7f90d5
BLAKE2b-256 04ebc8846601594e079c9ebc516aa0c56cdf7ba7d47bbc7a2bfa605ab88c2815

See more details on using hashes here.

File details

Details for the file lets_plot-3.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-3.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 331181914f5e43d5128d32036ddbb981928e77b5e2afe803515160d9825ea9e2
MD5 c40dea8573d529e42d138fb59e3888a1
BLAKE2b-256 e336f4b918bc28ef12610031029d7642be94ce12400c54abbb802d1d6391f0dd

See more details on using hashes here.

File details

Details for the file lets_plot-3.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-3.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9502f795bf5135a248be63f329ef4df69fd45c95200a2ff342b8ecb991ea0f17
MD5 a1a129d5d570634ce07b60dd75907bb9
BLAKE2b-256 e5d5a82725d4c7be0fd01459a0775c62bb511579372e810d7372165223a2304d

See more details on using hashes here.

File details

Details for the file lets_plot-3.2.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-3.2.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8e727c415d6623c354df59026d7e7719b4ef19ac05d872060134deb557aada67
MD5 0ba5cd4033fbef7010fb03e943194b72
BLAKE2b-256 7c2e614610b754c0d01c15e88ed887b4c28d7fb938ef281b1e66e1b8d0792f93

See more details on using hashes here.

File details

Details for the file lets_plot-3.2.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-3.2.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ac4ca344cb5acac06bba69eea1394284241619bb21f9e5da824ee03c96f74b89
MD5 a8dffd57ecc83bf56107f69e3187a1bc
BLAKE2b-256 c19028515cc7ca1624f3a8c00e43b23fccd03f73771b15c583fb0695472ba0d0

See more details on using hashes here.

File details

Details for the file lets_plot-3.2.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for lets_plot-3.2.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 cfb2365eae40b5485a42749e59f58ed1bb4e609088cb4227117c128736c80b74
MD5 8039025007ba0a571934d7d814a26113
BLAKE2b-256 80cf8accd78f54e39efab47e939095da320be4d9f1dbb28c5776a581812e0e1f

See more details on using hashes here.

File details

Details for the file lets_plot-3.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-3.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 97102fd7d240288ed020514d932838a24677cdac621027bd726e19c617fb57ea
MD5 f30aeb9d6003cae600f12ab43d2845c7
BLAKE2b-256 6ae528cfbf92bccdd793fca719fd2abed4e2d076b49d80b77aeecb47b7e47eea

See more details on using hashes here.

File details

Details for the file lets_plot-3.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-3.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4f35baaac34e9224ab61ce04cf8ba201b5fdee849dc4b09bc88efbf958dd6c82
MD5 0bdf7e4eb44fc873fc3d56a25edc4c7b
BLAKE2b-256 b30412a7b80a3a00af677ef66393c125341cb0a50df02d1fbdf3fd1f22ad42fe

See more details on using hashes here.

File details

Details for the file lets_plot-3.2.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-3.2.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8d6dad2da5e01d43a2e5bae05237b6e64f2eb25a3b92c6a209f26c640381ce3f
MD5 f0021ace5171b2855bf7fb4707a79a37
BLAKE2b-256 5207e3ed39a0244f67c1d47bf3855b6e0ea04374dbe955f111e9847ac934ed0d

See more details on using hashes here.

File details

Details for the file lets_plot-3.2.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-3.2.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9b43930b771fb772f86b84a17c12008d138e3c35283f0f393cad734e58b0511c
MD5 5de200c01050225608d8f4246a5f7a93
BLAKE2b-256 5508377f24d86e77fa061ab202c22f8516fe231331e7ce6d7cda7f3d3d0c27d0

See more details on using hashes here.

File details

Details for the file lets_plot-3.2.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: lets_plot-3.2.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for lets_plot-3.2.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a5fc4b51a70010a6820c3781ab155f6d49a661ee602e40d8e1e619f3d020bc62
MD5 25304bc31817cb9c43ac13d3a43cf456
BLAKE2b-256 5a0d421cb4cbc69f24e8a3a63cfa5b2306a8b65a89a4a10d282c3012a79d51ef

See more details on using hashes here.

File details

Details for the file lets_plot-3.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-3.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 88ab1b013a3954a53935953b81916fea66417a313e6f1fe638b73cd14d2d0b9e
MD5 3ed5c2636a5095645432535c33d4b521
BLAKE2b-256 deef375f1838e821de70c238d66f23ace9dd20773845ea5230874507c883a22c

See more details on using hashes here.

File details

Details for the file lets_plot-3.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-3.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1928aa0d79f2cccfb8ae734686b8f9f2acd109c4d7bf282f1ac14f83ee759fe5
MD5 eaf9e2f47f66b9d8f0c602e55c177361
BLAKE2b-256 70dec18d895185b4ef0003c3fe8dfab9f21a175d06f015f5191eceed2ab84a87

See more details on using hashes here.

File details

Details for the file lets_plot-3.2.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-3.2.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ea7f6f47a455e424a513b68201f93fefcdfe13c87889d71aab29cf77081aa125
MD5 ddad8d721fb7b2fe11e074f184266568
BLAKE2b-256 d322ae9d3d49ac309cbb3c17511c66a9175bc0b87caca436f3fb1c98f20512fe

See more details on using hashes here.

File details

Details for the file lets_plot-3.2.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-3.2.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9b77f1cba6a2929b33463e59759ee8166e7b4c923c221bde3c2ce3865d7d4c5a
MD5 bc2910f3caebb4342c990233c43ad2d6
BLAKE2b-256 f47711f0ac1e479674d70009b35cc6f5cbe98e19987f5ef3dfab96613ada310b

See more details on using hashes here.

File details

Details for the file lets_plot-3.2.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: lets_plot-3.2.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for lets_plot-3.2.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 7a4d0331c8457d07dadebb759cfd440a7e4831eb7f9c2f3e4fa592234bf16b05
MD5 eaabd552365ab7d971c923f80c7ecd9b
BLAKE2b-256 0955acadc157598280fe7ab240ce2dd6f5a2aa70e07315d5fbf2d77cd440c033

See more details on using hashes here.

File details

Details for the file lets_plot-3.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-3.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4e04cd25597ef8ae5c67968c11e2412ad0f5f76c52169a82fc647e4546b3b128
MD5 f087b34c70d6e824fae23e84e2543563
BLAKE2b-256 74b1c2c19a5a6f3294119cc2e80a826c1bffca1e0341cab5b0d1b027822d1791

See more details on using hashes here.

File details

Details for the file lets_plot-3.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-3.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 11cecb1887e7cdc1d491d8054710487205fe3f9da0a44b5f2d6033fffeab6d99
MD5 fc563b5e0c34b448d34e4b08fa96c2f1
BLAKE2b-256 a4bed48eacb5d7e90aef0337829609901b48795d79843f548eb8e5e0c87d23b1

See more details on using hashes here.

File details

Details for the file lets_plot-3.2.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-3.2.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4dcdfc83f69c9b51248daee6c990b6018fb58966140e4a7954e5f41b414bab99
MD5 a6868479777ef1017ff6b52d9f1a6c1b
BLAKE2b-256 fd1a0c6152921966f373d8df45176a13d282095dc3245e6116d1e39b413c8074

See more details on using hashes here.

File details

Details for the file lets_plot-3.2.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-3.2.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c88cef60d9a27343b75ee9cd32a07b4ed53f8cfe1ee3357de7e455db5379e067
MD5 885e53fceab6da25661a4e86b64e549a
BLAKE2b-256 e01ebd2b3cf9ecefaf87eee2fad448d37802376e8f57987f6ccd5452646619db

See more details on using hashes here.

File details

Details for the file lets_plot-3.2.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for lets_plot-3.2.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 183aed11269c8b11e37a732d90c6239c08feecdd3dfdbf2e7ff14e70a951047e
MD5 16235d3bbe338296ef8101d639849b67
BLAKE2b-256 60d7a522e3f386100baa363a3a3c2d0465cf234e58114f511426a53865b4bf54

See more details on using hashes here.

File details

Details for the file lets_plot-3.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-3.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e97dbf89ec52d246ec2601343e704af6d3315c3dbe628e071ca2fd67c3f4e070
MD5 cb76af37090ca91399feb4275842aff0
BLAKE2b-256 db08e34b89e392eff6ae79a6754587d4dd84b70791850f9b33997b7918520202

See more details on using hashes here.

File details

Details for the file lets_plot-3.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-3.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 881c924bf3d12b54541aca77f536b49f2d219e130b3ec2a755d9339844b88ff8
MD5 d2c3486ba89946e39512249e6ba7d969
BLAKE2b-256 9e8c3679a16093f92b541786b884bdae47a2dad590362e27276e8431e84cf0e5

See more details on using hashes here.

File details

Details for the file lets_plot-3.2.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-3.2.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 19b337a08d0b38f3a6404bcbe302e686d4922d2a8cd0aab257bef957cb8eb94d
MD5 ff20ca14063f8c87eaffe7f3dead1cc8
BLAKE2b-256 cea67ec846194d24a0c29c2b94d4a80053d8bac869abc6a13d9cfb7015f000fb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page