Skip to main content

An open source library for statistical plotting

Project description

Lets-Plot official JetBrains project

Couldn't load MIT license svg

Lets-Plot is an open-source plotting library for statistical data.

The design of Lets-Plot library is heavily influenced by Leland Wilkinson work The Grammar of Graphics describing the deep features that underlie all statistical graphics.

This grammar [...] is made up of a set of independent components that can be composed in many different ways. This makes [it] very powerful because you are not limited to a set of pre-specified graphics, but you can create new graphics that are precisely tailored for your problem.

We provide ggplot2-like plotting API for Python and Kotlin users.

Lets-Plot for Python

A bridge between R (ggplot2) and Python data visualization.

To learn more: lets-plot.org.

Lets-Plot for Kotlin

Lets-Plot for Kotlin adds plotting capabilities to scientific notebooks built on the Jupyter Kotlin Kernel.

You can use this API to embed charts into Kotlin/JVM and Kotlin/JS applications as well.

Lets-Plot for Kotlin at GitHub: https://github.com/JetBrains/lets-plot-kotlin.

"Lets-Plot in SciView" plugin

JetBrains Plugins JetBrains plugins

Scientific mode in PyCharm and in IntelliJ IDEA provides support for interactive scientific computing and data visualization.

Lets-Plot in SciView plugin adds support for interactive plotting to IntelliJ-based IDEs with the Scientific mode enabled.

Note: The Scientific mode is NOT available in communinty editions of JetBrains IDEs.

Also read:

What is new in 4.0.0

The major version was bumped to 4 due to a major package refactoring that the project has undergone.
This refactoring doesn't affect the Python API, however, as a result of package names changed,
Lets-Plot v4.0.0 is partially incompatible with Lets-Plot Kotlin API versions 4.4.1 and earlier.

A Number of Geometry Defaults Changed

  • The default qualitative color palette is now Color Brewer "Set1" (was "Set2").
  • Slightly bigger default size of points and width of lines.
  • Flavor-aware default colors for points, lines etc.

f-23c/images/geom_defaults.png
f-23c/images/flavor_geom_colors.png

See: example notebook.

  • Size of points is slightly adjusted to match the width of a line of the same "size".

f-23c/images/point_vs_line.png

Support for Variadic Line Width and/or Color in geom_line() and geom_path()


f-23c/images/variadic_width.png

See: example notebook.

Parameter "size_unit" in geom_pie()

A way to specify size of the pie in units relative to the plot size.

See: example notebook.

Stroke and Spacers in geom_pie()


f-23c/images/pie_stroke.png

See: example notebook.

New theme_void(), Geometries and Statistics

Change Log

See CHANGELOG.md for other changes and fixes.

Code of Conduct

This project and the corresponding community are governed by the JetBrains Open Source and Community Code of Conduct. Please make sure you read it.

License

Code and documentation released under the MIT license. Copyright © 2019-2023, JetBrains s.r.o.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

lets_plot-4.0.0-cp311-cp311-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

lets_plot-4.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

lets_plot-4.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

lets_plot-4.0.0-cp311-cp311-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

lets_plot-4.0.0-cp311-cp311-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

lets_plot-4.0.0-cp310-cp310-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

lets_plot-4.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

lets_plot-4.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

lets_plot-4.0.0-cp310-cp310-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

lets_plot-4.0.0-cp310-cp310-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

lets_plot-4.0.0-cp39-cp39-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

lets_plot-4.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

lets_plot-4.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

lets_plot-4.0.0-cp39-cp39-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

lets_plot-4.0.0-cp39-cp39-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

lets_plot-4.0.0-cp38-cp38-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

lets_plot-4.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

lets_plot-4.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

lets_plot-4.0.0-cp38-cp38-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

lets_plot-4.0.0-cp38-cp38-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

lets_plot-4.0.0-cp37-cp37m-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

lets_plot-4.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

lets_plot-4.0.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

lets_plot-4.0.0-cp37-cp37m-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file lets_plot-4.0.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for lets_plot-4.0.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 86ae3b0af4375b90b843e532a3224331561ef6d853a7e31cd7e0fc0906279cf0
MD5 bf84aac8b0c243abebf426a2a3c0aa91
BLAKE2b-256 8c57aa97c6b606657f8ab37bfe21d9bc6378a42a18028c4460acd96cb93094aa

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3eddadb5b4673151f6aad832bebe3255ae15999f3df233cd8e801fd3e7c2bea1
MD5 02da474346cfabc2a393ee1581867a12
BLAKE2b-256 2088b0ad9bf4404fd3672e44243b2c4e4ed8b685fff1096a5e0f396e3bf39866

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9f0e5449b83d641e19da6b0e6ae846b82c2195280513cfd8174992ca39b563c5
MD5 807ec16a49705c5f9345cdc2d625e0e6
BLAKE2b-256 518bab40bab1d422545590bd8dbb89b20d3331a7cd4aa93765c492480797df13

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.0.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d8b032352c8bec3c75635727d63e786b95a0cb43e58a58bc68da00f6bcd2b4a1
MD5 11c9011c766a3c8c4d79b999cce3a1a7
BLAKE2b-256 c60c781850087ed531aea29b85542ec4dcf26084f5a8de57b510fd435154da2c

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.0.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2645d4ccf17a9fa0944921b3315d5ae6ed6e77f5b00bfa5bdc01bb3e3d7b4258
MD5 8ee507aa3dd9c8b825b289bc6320f0e5
BLAKE2b-256 bd475f9ebf5543ac456c07cdb9ae459fd5fd8092acd386b01645943f75f820ac

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for lets_plot-4.0.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 dab8513c4f426ff590a972d56460431396a3ec8a3a488db5fa6cc780afcda58b
MD5 6272e8098c6df6a79def58e014787674
BLAKE2b-256 2e0abd4252cf88208bff0f32646b13200f7fc6eaf0f27d4b73da589d30e11d2d

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 802afe6ff8736b6d6fc4f40bde2056f33a558742787502148cf2492387040a6e
MD5 f89a1eb47f105eb08d1238c601742e1f
BLAKE2b-256 109dcd7c75764da6c0642d338b549ba5aedad8bcaa83f1af7ac9439592bf02af

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4dba9fcd1f9501dedfaba025bb872024297fa99aa95b9bde80a25f8642b80947
MD5 2ece99a9f988a82b8954452a5408e4ac
BLAKE2b-256 b9df6b0a295732eb6e4a9e3d9156a9bbc164c989c7dd5b829d4ad70e0b9645a7

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.0.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d191482b927f574aaca9c43cb7f5f93bfb1e5f246f13d77e011583675e91dcc2
MD5 3d465962e4634be5aa36c095ed1824d1
BLAKE2b-256 1d895b3b8e0f03f511ea5780e3439565f6897fc0214284daa01edb35596b6edb

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.0.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f8290e41a785f31ee1aceecf16da568742352f98644f98191f9ae122887a70d8
MD5 fc3c3f5f7a1a5ae157a65104903ff0f0
BLAKE2b-256 0ec5a410d364f5ad7c16a2a34c43357596fdce53e3318213a230df4be192fb02

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.0.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for lets_plot-4.0.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 59b43d37ccbe0189f4f583577656f8a5a8fc0fb6617c6e69ad4c17f50420274e
MD5 8d87a04bf68183f80ccaac3f74028c8a
BLAKE2b-256 cfcc8dedd208e35666c9c70d833878eb90216e986797721dfbc60dec2dc6b650

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 50f11441a6528ecd6fc1ac5beca3521fe68ef1376a4ced9c5e745f747ca764f2
MD5 fb705dd429c04b28d1c4910f17b9f417
BLAKE2b-256 7cfc5e19d46a639d46ff7717d379179040b34a3f276ae3f3603b5720186b2eaf

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 795d00fc2a8796c5a519390d633ce5575e1e6e29325690a093cca1a8510e2d7d
MD5 004dfdf98f3f484797db2476f3b995fd
BLAKE2b-256 8e474f7e7196e7c35dbd91c8bded2f77429d6653f4838714e572a9ef6f1096ec

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.0.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0d606f2b7171db912cc14549aba4d241e6df233145c7b61f9e905940cb12835b
MD5 c2d452883007dd5a9d537e8b41bb1eb5
BLAKE2b-256 413328d96a4f878ac039cfa63f7d6f10a6eddf65437772e019607f1503dffc59

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.0.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6c877c2745b1febf13e27611b7b5e889de2a497934ac4a65d65986376524b519
MD5 4a8558789e3d9bb87dad581f0b52005d
BLAKE2b-256 766661af96585e5d99411ee1cca395df9e87386003322c4f689a9a3abf2a1964

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.0.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for lets_plot-4.0.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ab4d6cb0d650c7dc78d797abacdc4e7234e05892fd9cc7e78b2ce0875d5463a0
MD5 2860b6d91c798f9ef84a9f32606ca4f8
BLAKE2b-256 046d6cb9d809e32badd3744fbe8473dc4b5011a5524e1213986f27f31152563c

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cb9f01efc23a5b71aade824ab758661b36e00eca1ae55b25eb28939e48e97c83
MD5 622eddcb6dab83858499211c5ac5ce41
BLAKE2b-256 51b4ed7e3bff1e477fd4d6ea4c7be6ef21683531d8d208b07d5d2d18afb586fb

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 59ae9e96e7c27feb86a402c5debcfab4c0422f890821e02705670083b357e459
MD5 051339d42dd814ce627d10784efe8695
BLAKE2b-256 a5eddeaa66f486b7b12b3f0995b7d92df9f5b449bea29b92a122286ef2ad65c7

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.0.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ee3db53b872e9cccadedb3d6447eac517d8c6aa4b963771fbdc8939d3d63da18
MD5 3a13dea5933d1ed711cc04a5f8a8c701
BLAKE2b-256 a1638eddd50723d805ca28d264fe0526802a6af08f126d05430faab3ba432bf6

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.0.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2a08c93f4ce241a042a99cad6c879f72c577fb79ad75b274eb7531d038a94950
MD5 e7470d93a40f3e6ca087a43b2c22814b
BLAKE2b-256 cbba7fb46abdd4b50a82ee04f7d2f5e35f3bc4ceadc1ced0493301aed58479cc

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for lets_plot-4.0.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 407771e540506b4b39fa0703aabaad2df4376e29d4305ffc85302b99a81eeec4
MD5 6e191d3f6a50e421f7c86ed847144cf4
BLAKE2b-256 e7f12672e91efb4a8bee82f44d1a87d888195dc746c81a73aa6cfc534f139eee

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ef0d5eaf93fe49ff1e78940928330f48fb8dc0956d49f67187d093ab1da4706a
MD5 3796c5016921ffac7cf5b86f395348c2
BLAKE2b-256 1107a28244db60741df603568301986b66eb3e96c73d2b8cb87fd3c55abe5bf6

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.0.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9aca1317a93be87482f7194e5c8c5ad6cf748ea5ade92624b7bff9ac66b11e43
MD5 85a226ba3b582c5f8b3fef3f7d763949
BLAKE2b-256 d2553c07662e0638db5f2a91605f27c93f0dec8aca1744d135c145da19351959

See more details on using hashes here.

File details

Details for the file lets_plot-4.0.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.0.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 60c0bbf7119fad301fc867823e19004bc90695764fbef2b30944a3336724a235
MD5 af14bec76c9e6ec491eb4646593a3586
BLAKE2b-256 5f7933b6a32085e3d97fb7503f4e12f58b1e0b289eb75eff502666920594ca60

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page