Skip to main content

No project description provided

Project description

Llmbda FastAPI

Add your fastapi endpoints to your Relevance Notebook for chaining.

  1. Install:
pip install llmbda_fastapi
  1. Set your Relevance Auth Token from cloud.relevanceai.com/sdk/api:
SET RELEVANCE_AUTH_TOKEN=xxx

or

export RELEVANCE_AUTH_TOKEN=xxx
  1. Include these 2 lines of code:
PUBLIC_URL = "https://whereyourapiishosted.com/"

from fastapi import FastAPI
app = FastAPI()

from llmbda_fastapi import create_transformations
create_transformations(app.routes, PUBLIC_URL)

If you are working off a local computer you can use ngrok to create a public url:

pip install pyngrok
from fastapi import FastAPI
app = FastAPI()

#add this for ngrok
from pyngrok import ngrok
PUBLIC_URL = ngrok.connect(8000).public_url

#add this
from llmbda_fastapi import create_transformations
create_transformations(app.routes, PUBLIC_URL)
  1. Add these options to your existing api endpoints, for example this is a endpoint to "Run code in your local environment"
from fastapi import APIRouter, Query
from pydantic import BaseModel
from llmbda_fastapi.frontend import input_components

router = APIRouter()

#Optionally specify frontend_component to make this input be displayed as a specific frontend component
class ExecuteCodeParams(BaseModel):
    code : str = Query(..., description="Code to run", frontend_component=input_components.BaseTextArea())
    #the name and description of this will be automatically picked up and displayed in the notebook

class ExecuteCodeResponseParams(BaseModel):
    results : str = Query(" ", description="Return whats printed by the code")

# This is the actual transformation
def evaluate_code(code):
    print("Executing code: " + code)
    output = eval(code)
    print(output)
    return {"results" : str(output)}

# This is the API endpoint for the transformation
# The name and description of this will be automatically picked up and displayed in the notebook. Make sure to set response_model and query parameters if they are required.
@router.post("/run_code", name="Run Code", description="Run Code Locally - Test", tags=["coding"], response_model=ExecuteCodeResponseParams)
def run_code_api(commons: ExecuteCodeParams):
    return evaluate_code(commons.code)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llmbda_fastapi-0.0.5.tar.gz (5.4 kB view details)

Uploaded Source

Built Distribution

llmbda_fastapi-0.0.5-py3-none-any.whl (6.7 kB view details)

Uploaded Python 3

File details

Details for the file llmbda_fastapi-0.0.5.tar.gz.

File metadata

  • Download URL: llmbda_fastapi-0.0.5.tar.gz
  • Upload date:
  • Size: 5.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for llmbda_fastapi-0.0.5.tar.gz
Algorithm Hash digest
SHA256 f2f1d8f60ada3e1f91f172d043fc6efcea3acbd08f2fb11c01cdd51465cb0948
MD5 5f11a1432e3aa0a16e5c8b40eac98376
BLAKE2b-256 e67b6506a34ef6a548f24ac6a74e927f2506ae501fed19a43dcdb93d3a440a2d

See more details on using hashes here.

File details

Details for the file llmbda_fastapi-0.0.5-py3-none-any.whl.

File metadata

  • Download URL: llmbda_fastapi-0.0.5-py3-none-any.whl
  • Upload date:
  • Size: 6.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for llmbda_fastapi-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 b9d589c1462ea1060a62b522877cf69353edbe9098589356dd58193e6b0cb30b
MD5 29121beb227c0a3feb4521869ce20a30
BLAKE2b-256 ef374049412b7d18424337d5395881768223c20ae1954d0401d87665514e2c7d

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page