Skip to main content

Graph algorithms

Project description

logo sknetwork https://img.shields.io/pypi/v/scikit-network.svg https://travis-ci.org/sknetwork-team/scikit-network.svg Documentation Status Updates

Simple and efficient tools for the analysis of large graphs.

Quickstart

Install scikit-network:

$ pip install scikit-network

Import scikit-network in a Python project:

import sknetwork as skn

See examples in the tutorials; the notebooks are available here.

History

0.10.1 (2019-08-26)

  • Minor bug

0.10.0 (2019-08-26)

  • Clustering (and related metrics) for directed and bipartite graphs

  • Hierarchical clustering (and related metrics) for directed and bipartite graphs

  • Fix bugs on embedding algorithms

0.9.0 (2019-07-24)

  • Change parser output

  • Fix bugs in ranking algorithms (zero-degree nodes)

  • Add notebooks

  • Import algorithms from scipy (shortest path, connected components, bfs/dfs)

  • Change SVD embedding (now in decreasing order of singular values)

0.8.2 (2019-07-19)

  • Minor bug

0.8.1 (2019-07-18)

  • Added diffusion ranking

  • Minor fixes

  • Minor doc tweaking

0.8.0 (2019-07-17)

  • Changed Louvain, BiLouvain, Paris and PageRank APIs

  • Changed PageRank method

  • Documentation overhaul

  • Improved Jupyter tutorials

0.7.1 (2019-07-04)

  • Added Algorithm class for nicer repr of some classes

  • Added Jupyter notebooks as tutorials in the docs

  • Minor fixes

0.7.0 (2019-06-24)

  • Updated PageRank

  • Added tests for Numba versioning

0.6.1 (2019-06-19)

  • Minor bug

0.6.0 (2019-06-19)

  • Largest connected component

  • Simplex projection

  • Sparse Low Rank Decomposition

  • Numba support for Paris

  • Various fixes and updates

0.5.0 (2019-04-18)

  • Unified Louvain.

0.4.0 (2019-04-03)

  • Added Louvain for directed graphs and ComboLouvain for bipartite graphs.

0.3.0 (2019-03-29)

  • Updated clustering module and documentation.

0.2.0 (2019-03-21)

  • First real release on PyPI.

0.1.1 (2018-05-29)

  • First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-network-0.10.1.tar.gz (58.6 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

scikit_network-0.10.1-py2.py3-none-any.whl (76.6 kB view details)

Uploaded Python 2Python 3

File details

Details for the file scikit-network-0.10.1.tar.gz.

File metadata

  • Download URL: scikit-network-0.10.1.tar.gz
  • Upload date:
  • Size: 58.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.35.0 CPython/3.6.7

File hashes

Hashes for scikit-network-0.10.1.tar.gz
Algorithm Hash digest
SHA256 7cad597b78cd5fb0fad926eea6750f73b9eec6fb6250c0e5226c5d1916b458f2
MD5 f0c53c1c2848061bbd07cbd0df714c0c
BLAKE2b-256 29f5fafc87a2e6c4920b8dc7b61e33acf79830d7e2ce268714a746761bd72aa4

See more details on using hashes here.

File details

Details for the file scikit_network-0.10.1-py2.py3-none-any.whl.

File metadata

  • Download URL: scikit_network-0.10.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 76.6 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.35.0 CPython/3.6.7

File hashes

Hashes for scikit_network-0.10.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 77c17b14581f707a8ce86061b845185e050dc086c8eb1f075a5fe295ad7e276d
MD5 d62d39e033cd2a363d326366aa8a4b9a
BLAKE2b-256 4fd7f8fb7b46b7f1da31bda59b0e685b6bbd4ff3fc9c42ca88074a3d526475f8

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page