NumPy: array processing for numbers, strings, records, and objects.
Project description
NumPy is a general-purpose array-processing package designed to efficiently manipulate large multi-dimensional arrays of arbitrary records without sacrificing too much speed for small multi-dimensional arrays. NumPy is built on the Numeric code base and adds features introduced by numarray as well as an extended C-API and the ability to create arrays of arbitrary type which also makes NumPy suitable for interfacing with general-purpose data-base applications.
There are also basic facilities for discrete fourier transform, basic linear algebra and random number generation.
All numpy wheels distributed from pypi are BSD licensed.
Windows wheels are linked against the ATLAS BLAS / LAPACK library, restricted to SSE2 instructions, so may not give optimal linear algebra performance for your machine. See http://docs.scipy.org/doc/numpy/user/install.html for alternatives.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Filename, size | File type | Python version | Upload date | Hashes |
---|---|---|---|---|
Filename, size numpy-1.12.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.4 MB) | File type Wheel | Python version cp27 | Upload date | Hashes View |
Filename, size numpy-1.12.1-cp27-cp27m-manylinux1_i686.whl (12.4 MB) | File type Wheel | Python version cp27 | Upload date | Hashes View |
Filename, size numpy-1.12.1-cp27-cp27m-manylinux1_x86_64.whl (16.5 MB) | File type Wheel | Python version cp27 | Upload date | Hashes View |
Filename, size numpy-1.12.1-cp27-cp27mu-manylinux1_i686.whl (12.4 MB) | File type Wheel | Python version cp27 | Upload date | Hashes View |
Filename, size numpy-1.12.1-cp27-cp27mu-manylinux1_x86_64.whl (16.5 MB) | File type Wheel | Python version cp27 | Upload date | Hashes View |
Filename, size numpy-1.12.1-cp27-none-win32.whl (6.6 MB) | File type Wheel | Python version cp27 | Upload date | Hashes View |
Filename, size numpy-1.12.1-cp27-none-win_amd64.whl (7.5 MB) | File type Wheel | Python version cp27 | Upload date | Hashes View |
Filename, size numpy-1.12.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.4 MB) | File type Wheel | Python version cp34 | Upload date | Hashes View |
Filename, size numpy-1.12.1-cp34-cp34m-manylinux1_i686.whl (12.7 MB) | File type Wheel | Python version cp34 | Upload date | Hashes View |
Filename, size numpy-1.12.1-cp34-cp34m-manylinux1_x86_64.whl (16.8 MB) | File type Wheel | Python version cp34 | Upload date | Hashes View |
Filename, size numpy-1.12.1-cp34-none-win32.whl (6.6 MB) | File type Wheel | Python version cp34 | Upload date | Hashes View |
Filename, size numpy-1.12.1-cp34-none-win_amd64.whl (7.5 MB) | File type Wheel | Python version cp34 | Upload date | Hashes View |
Filename, size numpy-1.12.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.4 MB) | File type Wheel | Python version cp35 | Upload date | Hashes View |
Filename, size numpy-1.12.1-cp35-cp35m-manylinux1_i686.whl (12.6 MB) | File type Wheel | Python version cp35 | Upload date | Hashes View |
Filename, size numpy-1.12.1-cp35-cp35m-manylinux1_x86_64.whl (16.8 MB) | File type Wheel | Python version cp35 | Upload date | Hashes View |
Filename, size numpy-1.12.1-cp35-none-win32.whl (6.7 MB) | File type Wheel | Python version cp35 | Upload date | Hashes View |
Filename, size numpy-1.12.1-cp35-none-win_amd64.whl (7.7 MB) | File type Wheel | Python version cp35 | Upload date | Hashes View |
Filename, size numpy-1.12.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.4 MB) | File type Wheel | Python version cp36 | Upload date | Hashes View |
Filename, size numpy-1.12.1-cp36-cp36m-manylinux1_i686.whl (12.7 MB) | File type Wheel | Python version cp36 | Upload date | Hashes View |
Filename, size numpy-1.12.1-cp36-cp36m-manylinux1_x86_64.whl (16.8 MB) | File type Wheel | Python version cp36 | Upload date | Hashes View |
Filename, size numpy-1.12.1-cp36-none-win32.whl (6.7 MB) | File type Wheel | Python version cp36 | Upload date | Hashes View |
Filename, size numpy-1.12.1-cp36-none-win_amd64.whl (7.7 MB) | File type Wheel | Python version cp36 | Upload date | Hashes View |
Filename, size numpy-1.12.1.zip (4.8 MB) | File type Source | Python version None | Upload date | Hashes View |
Hashes for numpy-1.12.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3b21dc40fa1e2450dee8cf54991b0f95c415ac508d5db1227338efcf03c162cd |
|
MD5 | ca6c4a370f76bb461f7c3e254c45db02 |
|
BLAKE2-256 | 0505c9d5ef7c85ce92a95eb449523c8b3baf8890bf04e1ebcb119980915c5488 |
Hashes for numpy-1.12.1-cp27-cp27m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 405ce136edb18c6f1f8c5acc75d7d8fbb875cc8b5015562251b93435099233d3 |
|
MD5 | 71c887adb4cf6a374ff4a83115c8860b |
|
BLAKE2-256 | 1eea6b12b5ae7f879fdda936f0a407ecb1b8f1b65f1b57c696f6a36632c55250 |
Hashes for numpy-1.12.1-cp27-cp27m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ca917155b35b3bcc68ef1ad82570a29414f5088495ea8f68c65b071c50e64340 |
|
MD5 | 614755c8ee8408b83bd1ba837b6034b2 |
|
BLAKE2-256 | d8f997aa0903ae39ed4ab6df1c9c22902f3c71f4330a54cf5a81b2bea585544d |
Hashes for numpy-1.12.1-cp27-cp27mu-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7e9015bc5de54c8bd73ca750ccedfda25d34a25a767caf802740d35a692ec3ab |
|
MD5 | 3ec80a7e027146d4fad10f85426af256 |
|
BLAKE2-256 | f5f983189c429515422673e226ea49805c7c7c5260f0dc5cd2e7baf70d892cc1 |
Hashes for numpy-1.12.1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | cd7892f7d644d1b4ed2ead254d4851616c07ecf82618e3203e2a81747ffb6069 |
|
MD5 | 471f740f61f7fba1a1a1e526bf710c49 |
|
BLAKE2-256 | f9d5f24f86b51298f171826a398efdd64b5214b687a28a2f05ff736b1505b1b2 |
Hashes for numpy-1.12.1-cp27-none-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 56e68de63ae738f40669b6a5f0601f9453940a0470a1e9bea16448e5b53f5f28 |
|
MD5 | 906d8d8e1cb6a5056e0405d5b54d6440 |
|
BLAKE2-256 | 32155dac23340abe95eae4e819f1575fb9be6b87ea92bf31ca808b41119d0346 |
Hashes for numpy-1.12.1-cp27-none-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 95e52d1077abeead6d205c1fc644f075228813859bb625960c1ae1248c4189ba |
|
MD5 | 7cd640cdcb6b80fa501d377bf883ec61 |
|
BLAKE2-256 | a06102bbd10971adb84ba13cf642b7b2702c9d0e20a4432f6cbf0866274bac98 |
Hashes for numpy-1.12.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | bcbce5ef18dc826ef67756a0d3669baca815c8d44b26867c6865f714a23d9262 |
|
MD5 | 2d89d21806408befdc20b5c9e8bfd354 |
|
BLAKE2-256 | 69e1c8b40d1c9e1130996881ad3d42ecec7b31e24307a48c3b23c69ab9a0cafb |
Hashes for numpy-1.12.1-cp34-cp34m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | d8dbd7e35e4819e059a044c7545d5602937d6b666dbd9b6eb8ff40037ab0980c |
|
MD5 | e5e9c27564bd41d88df001c2cc0ace7b |
|
BLAKE2-256 | 889210cb30d909aa55003096ad23bab761bc305c05b7c20c406760c76e0c72e0 |
Hashes for numpy-1.12.1-cp34-cp34m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4eac5f2f624c5e7eecbdb51395ff39a099c48cab607a158f16f288c6fe39a2b3 |
|
MD5 | 6288d4e9cfea859e03dc82879539d029 |
|
BLAKE2-256 | 0264c6c1c24ff4dbcd789fcfdb782e343ac23c074f6b8b03e818ff60eb0f937f |
Hashes for numpy-1.12.1-cp34-none-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9cd16915a815c2f04633d14e7640083c1b72e82b325439c91370adfd376c9975 |
|
MD5 | 7e08d4f57dc51c7916042670753c0462 |
|
BLAKE2-256 | adb05fcd4319cb4f66db0ebd8facb030981e5a34172a27d35fdeafbf2cfafaaf |
Hashes for numpy-1.12.1-cp34-none-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4c64d9c389827f310c7f4e7887b741c34c6b2c337ff63a12f66ef0197fdf5366 |
|
MD5 | cac2b18bde8a76537762e8acfb25c89d |
|
BLAKE2-256 | 139dc08e7977921729d5655aebdd2e2170641e310e789aa6944fb43a406c0282 |
Hashes for numpy-1.12.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9ce673bb7b6240b94b60b52186f5c0825f4b31e8191c8bc7412a7d0348fca2cd |
|
MD5 | ebd51c3549ee44a57af0f35a9f5b2b02 |
|
BLAKE2-256 | 7e7919053aebeb6e0ddf160ee1776a842d580e69757790ea1af8719d31595485 |
Hashes for numpy-1.12.1-cp35-cp35m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 130105bfc0b03245115da67b441c48597bf1ed7f5385f8388ce4f75cdf2f91d2 |
|
MD5 | 5bb0426593f74b922f1e549cde412f4b |
|
BLAKE2-256 | a01cfc043d84afe1157c0ba52ed55d19fbfd51aaacabc81036c74155862aa8d6 |
Hashes for numpy-1.12.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 92dce120e385767cbe433719b5e3fdb1ac81907140d3984b3187208f79aff19f |
|
MD5 | c372561ab420e6e18eb8f2e7da24f1fd |
|
BLAKE2-256 | 715c945047c185332bbaf57c400dc4c9bffa13c97486df3cd99e25a641f1cbbb |
Hashes for numpy-1.12.1-cp35-none-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e97cecd783e8e7e70d18a42f6df7f18be14cbcc82fb9b837b03d072d1401ae53 |
|
MD5 | 9d2d3a0d9af306c51255ced96244213f |
|
BLAKE2-256 | 6e06b83acf0caf285cc9fdcbb45202c1f0609fc06ad7555449a1c6e4d9572a0e |
Hashes for numpy-1.12.1-cp35-none-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 818d5a1d5752d09929ce1ba1735366d5acc769a1839386dc91f3ac30cf9faf19 |
|
MD5 | 4b32dcd1c59804f53cb9473d99673ea5 |
|
BLAKE2-256 | 92e27d9c6894511337b012735c0c149a7b4e49db0b934798b3ae05a3b46f31f0 |
Hashes for numpy-1.12.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 43ccfed0092def52b924e004780517c762f8fce3ececbd3f8e2580ac0538bb5e |
|
MD5 | a1d17430e3688e962feac3ec0d2f12c2 |
|
BLAKE2-256 | e957a204d3eaefc5ba2bb3d93ac1b93d1ab755d3874ab3d9c33a897e9f79b035 |
Hashes for numpy-1.12.1-cp36-cp36m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5cb6341fc885b101978328d3c8d51a069a97a00699a30891106ef7dda56a0d30 |
|
MD5 | c1f1c64b9d421c8715e476ae8a9d274e |
|
BLAKE2-256 | ed4159f8fb0197e66377db8407df3ca465011267e988b094c4df0879688efe92 |
Hashes for numpy-1.12.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5dd60892710df0ef654bbf4d1e3cb53ac79845e55a96e4a26dd47218e06d819a |
|
MD5 | fbebdc68b7698e00c07bf4ddae0fb717 |
|
BLAKE2-256 | b1e2884cfbfd4f21b2313210d1d2ea72ecc381b98826d1b7e6606929ac6c0a08 |
Hashes for numpy-1.12.1-cp36-none-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 727d6373355b00b96d9320254a676b878d6cd43ae409186bec27eec3e5e4e6e7 |
|
MD5 | 3e3110a79b3ce9feb8af31aaf3b47003 |
|
BLAKE2-256 | 1f472b4201be09432abfb52a449f58005d2f014b9d51acceafe54c8192980ccb |
Hashes for numpy-1.12.1-cp36-none-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 47b4c4da2fe0618b65fd70987a414fdc24c09e1ffdff77f7147a3c6627b07596 |
|
MD5 | 0c753fec7a10e3778215eb9f7c6f43f4 |
|
BLAKE2-256 | 581a473632103d3ef36f20cb578c33bda0fcd2dfd442845e3fedb94b59baf13f |