Skip to main content

NumPy is the fundamental package for array computing with Python.

Project description

It provides:

  • a powerful N-dimensional array object

  • sophisticated (broadcasting) functions

  • tools for integrating C/C++ and Fortran code

  • useful linear algebra, Fourier transform, and random number capabilities

  • and much more

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.

All NumPy wheels distributed on PyPI are BSD licensed.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.19.5.zip (7.3 MB view details)

Uploaded Source

Built Distributions

numpy-1.19.5-pp36-pypy36_pp73-manylinux2010_x86_64.whl (14.3 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

numpy-1.19.5-cp39-cp39-win_amd64.whl (13.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

numpy-1.19.5-cp39-cp39-win32.whl (11.0 MB view details)

Uploaded CPython 3.9 Windows x86

numpy-1.19.5-cp39-cp39-manylinux2014_aarch64.whl (12.4 MB view details)

Uploaded CPython 3.9

numpy-1.19.5-cp39-cp39-manylinux2010_x86_64.whl (14.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

numpy-1.19.5-cp39-cp39-manylinux2010_i686.whl (12.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

numpy-1.19.5-cp39-cp39-manylinux1_x86_64.whl (13.4 MB view details)

Uploaded CPython 3.9

numpy-1.19.5-cp39-cp39-manylinux1_i686.whl (11.5 MB view details)

Uploaded CPython 3.9

numpy-1.19.5-cp39-cp39-macosx_10_9_x86_64.whl (15.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

numpy-1.19.5-cp38-cp38-win_amd64.whl (13.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

numpy-1.19.5-cp38-cp38-win32.whl (11.0 MB view details)

Uploaded CPython 3.8 Windows x86

numpy-1.19.5-cp38-cp38-manylinux2014_aarch64.whl (12.4 MB view details)

Uploaded CPython 3.8

numpy-1.19.5-cp38-cp38-manylinux2010_x86_64.whl (14.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

numpy-1.19.5-cp38-cp38-manylinux2010_i686.whl (12.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

numpy-1.19.5-cp38-cp38-manylinux1_x86_64.whl (13.4 MB view details)

Uploaded CPython 3.8

numpy-1.19.5-cp38-cp38-manylinux1_i686.whl (11.5 MB view details)

Uploaded CPython 3.8

numpy-1.19.5-cp38-cp38-macosx_10_9_x86_64.whl (15.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

numpy-1.19.5-cp37-cp37m-win_amd64.whl (13.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

numpy-1.19.5-cp37-cp37m-win32.whl (11.0 MB view details)

Uploaded CPython 3.7m Windows x86

numpy-1.19.5-cp37-cp37m-manylinux2014_aarch64.whl (12.4 MB view details)

Uploaded CPython 3.7m

numpy-1.19.5-cp37-cp37m-manylinux2010_x86_64.whl (14.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

numpy-1.19.5-cp37-cp37m-manylinux2010_i686.whl (12.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

numpy-1.19.5-cp37-cp37m-manylinux1_x86_64.whl (13.4 MB view details)

Uploaded CPython 3.7m

numpy-1.19.5-cp37-cp37m-manylinux1_i686.whl (11.5 MB view details)

Uploaded CPython 3.7m

numpy-1.19.5-cp37-cp37m-macosx_10_9_x86_64.whl (15.6 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

numpy-1.19.5-cp36-cp36m-win_amd64.whl (13.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

numpy-1.19.5-cp36-cp36m-win32.whl (11.0 MB view details)

Uploaded CPython 3.6m Windows x86

numpy-1.19.5-cp36-cp36m-manylinux2014_aarch64.whl (12.4 MB view details)

Uploaded CPython 3.6m

numpy-1.19.5-cp36-cp36m-manylinux2010_x86_64.whl (14.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

numpy-1.19.5-cp36-cp36m-manylinux2010_i686.whl (12.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

numpy-1.19.5-cp36-cp36m-manylinux1_x86_64.whl (13.4 MB view details)

Uploaded CPython 3.6m

numpy-1.19.5-cp36-cp36m-manylinux1_i686.whl (11.5 MB view details)

Uploaded CPython 3.6m

numpy-1.19.5-cp36-cp36m-macosx_10_9_x86_64.whl (15.6 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file numpy-1.19.5.zip.

File metadata

  • Download URL: numpy-1.19.5.zip
  • Upload date:
  • Size: 7.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.19.5.zip
Algorithm Hash digest
SHA256 a76f502430dd98d7546e1ea2250a7360c065a5fdea52b2dffe8ae7180909b6f4
MD5 f6a1b48717c552bbc18f1adc3cc1fe0e
BLAKE2b-256 51603f0fe5b7675a461d96b9d6729beecd3532565743278a9c3fe6dd09697fa7

See more details on using hashes here.

File details

Details for the file numpy-1.19.5-pp36-pypy36_pp73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: numpy-1.19.5-pp36-pypy36_pp73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 14.3 MB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.19.5-pp36-pypy36_pp73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a0d53e51a6cb6f0d9082decb7a4cb6dfb33055308c4c44f53103c073f649af73
MD5 c9b5c30dc035aa7bd9c1ebf6771939c3
BLAKE2b-256 3c1bc8bb1bfe13a697f76a2c970df8fc7f287352ebafa9708a5b3f52692efd43

See more details on using hashes here.

File details

Details for the file numpy-1.19.5-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numpy-1.19.5-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 13.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.19.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0eef32ca3132a48e43f6a0f5a82cb508f22ce5a3d6f67a8329c81c8e226d3f6e
MD5 cca2b2301f11a89329727ea5302d9b12
BLAKE2b-256 bc40d6f7ba9ce5406b578e538325828ea43849a3dfd8db63d1147a257d19c8d1

See more details on using hashes here.

File details

Details for the file numpy-1.19.5-cp39-cp39-win32.whl.

File metadata

  • Download URL: numpy-1.19.5-cp39-cp39-win32.whl
  • Upload date:
  • Size: 11.0 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.19.5-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 ab83f24d5c52d60dbc8cd0528759532736b56db58adaa7b5f1f76ad551416a1e
MD5 15589af64e734aa1ecc7e04767ccc63d
BLAKE2b-256 77fbf0b570d098e23a899c8e64b3ceaa51bcba617789a45d8b558ad255aa867a

See more details on using hashes here.

File details

Details for the file numpy-1.19.5-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

  • Download URL: numpy-1.19.5-cp39-cp39-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 12.4 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.19.5-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 df609c82f18c5b9f6cb97271f03315ff0dbe481a2a02e56aeb1b1a985ce38e60
MD5 b48e31d316e4803b5e463dd5e38c8339
BLAKE2b-256 9111059ef2ef98f9eea49ece6d6046bc537c3050c575108a51a624a179c8e7e3

See more details on using hashes here.

File details

Details for the file numpy-1.19.5-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: numpy-1.19.5-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 14.9 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.19.5-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 400580cbd3cff6ffa6293df2278c75aef2d58d8d93d3c5614cd67981dae68ceb
MD5 9a0ac6f630de2081302df9bbffe1b555
BLAKE2b-256 f75002c0fb5d913901ad643934713a31567df9b5065c28efc9672b707f80dfb1

See more details on using hashes here.

File details

Details for the file numpy-1.19.5-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: numpy-1.19.5-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 12.6 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.19.5-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 2ea52bd92ab9f768cc64a4c3ef8f4b2580a17af0a5436f6126b08efbd1838371
MD5 5f84721a5e286e383bf6ba251c8add31
BLAKE2b-256 60f19afcfd695ffa3d8295aa2180ae9499f3ab03ddde7ac559c320945f7c4725

See more details on using hashes here.

File details

Details for the file numpy-1.19.5-cp39-cp39-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.19.5-cp39-cp39-manylinux1_x86_64.whl
  • Upload date:
  • Size: 13.4 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.19.5-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7fb43004bce0ca31d8f13a6eb5e943fa73371381e53f7074ed21a4cb786c32f8
MD5 2613261149a32771243bb71f53e3bc3a
BLAKE2b-256 8962189b502767f70a310a010c397fcd52169fdf75f6876e52beb54e98f1ce93

See more details on using hashes here.

File details

Details for the file numpy-1.19.5-cp39-cp39-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.19.5-cp39-cp39-manylinux1_i686.whl
  • Upload date:
  • Size: 11.5 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.19.5-cp39-cp39-manylinux1_i686.whl
Algorithm Hash digest
SHA256 d6631f2e867676b13026e2846180e2c13c1e11289d67da08d71cacb2cd93d4aa
MD5 c7c070e284f49f9915ecbcec847760a5
BLAKE2b-256 a76706b4c4af90b22ce97270eb75927e42b31b814be44a28e12ec2d9ff8995e7

See more details on using hashes here.

File details

Details for the file numpy-1.19.5-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.19.5-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 15.6 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.19.5-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c843b3f50d1ab7361ca4f0b3639bf691569493a56808a0b0c54a051d260b7dbd
MD5 3c3fc07aeb311677975a58d1ab1f3e5e
BLAKE2b-256 e1c565b2f257a154c7fabc1895b435e7863a1f0bb1769d3c28f1500976e090ee

See more details on using hashes here.

File details

Details for the file numpy-1.19.5-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: numpy-1.19.5-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 13.3 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.19.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 811daee36a58dc79cf3d8bdd4a490e4277d0e4b7d103a001a4e73ddb48e7e6aa
MD5 abed55a50177d54a10d8e89ccde971ca
BLAKE2b-256 5a1325a83b9aae5fe9460b1997f5ba48814783d7f460bbbd8cadd96e1481ddf0

See more details on using hashes here.

File details

Details for the file numpy-1.19.5-cp38-cp38-win32.whl.

File metadata

  • Download URL: numpy-1.19.5-cp38-cp38-win32.whl
  • Upload date:
  • Size: 11.0 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.19.5-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 384ec0463d1c2671170901994aeb6dce126de0a95ccc3976c43b0038a37329c2
MD5 d5a97ef684d53b04bf14e0b6cca7e8a1
BLAKE2b-256 fd25273019ca5ffcabd8a8fff7dd44460e4f9a2ccbc59a647ce511cb721ff757

See more details on using hashes here.

File details

Details for the file numpy-1.19.5-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

  • Download URL: numpy-1.19.5-cp38-cp38-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 12.4 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.19.5-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 99abf4f353c3d1a0c7a5f27699482c987cf663b1eac20db59b8c7b061eabd7fc
MD5 f4e63f368fc230f482205e3b65b8f5c7
BLAKE2b-256 97b69ad5980f6657b2d5a7d1d1175f1f48881d5d73c5140c48dbbf08132b5938

See more details on using hashes here.

File details

Details for the file numpy-1.19.5-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: numpy-1.19.5-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 14.9 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.19.5-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a9d17f2be3b427fbb2bce61e596cf555d6f8a56c222bd2ca148baeeb5e5c783c
MD5 1b334aad7bdfa96dc3eb10f55f8c44dd
BLAKE2b-256 66d73b133b17e185f14137bc8afe7a41daf1f31556900f10238312a5ae9c7345

See more details on using hashes here.

File details

Details for the file numpy-1.19.5-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: numpy-1.19.5-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 12.6 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.19.5-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 759e4095edc3c1b3ac031f34d9459fa781777a93ccc633a472a5468587a190ff
MD5 2c72ca182bc4b4904b6c87f7d4312036
BLAKE2b-256 4773b9435c96228003915c9128c0b49af96aed359a03aa8a86f562add743a99f

See more details on using hashes here.

File details

Details for the file numpy-1.19.5-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.19.5-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 13.4 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.19.5-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 012426a41bc9ab63bb158635aecccc7610e3eff5d31d1eb43bc099debc979d94
MD5 6875515a35558ac17d3cdc8e8578debd
BLAKE2b-256 21da4a59e01f8fff4281a068e90868edd62253c1431a1b7315fe6789f8a0d9c0

See more details on using hashes here.

File details

Details for the file numpy-1.19.5-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.19.5-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 11.5 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.19.5-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 1ded4fce9cfaaf24e7a0ab51b7a87be9038ea1ace7f34b841fe3b6894c721d1c
MD5 8302aaa77a0978df894f9f62caac7ee7
BLAKE2b-256 57c6bb70999019bc1d11ab27d309eba2f4b7c9c241ca64912ebaa8ec82593df6

See more details on using hashes here.

File details

Details for the file numpy-1.19.5-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.19.5-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 15.6 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.19.5-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cf2402002d3d9f91c8b01e66fbb436a4ed01c6498fffed0e4c7566da1d40ee1e
MD5 2beca0d3718c5b355f3c78d9f4f1fe87
BLAKE2b-256 a6b7c0594c698c7149bfe738724ab9ab3722dca3a4a43823468fe9481abe4016

See more details on using hashes here.

File details

Details for the file numpy-1.19.5-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.19.5-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 13.2 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.19.5-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a12ff4c8ddfee61f90a1633a4c4afd3f7bcb32b11c52026c92a12e1325922d0d
MD5 c50b11de3b82163e6e75d17762368425
BLAKE2b-256 ff1860ac053857fb924b0324c81200b59c00317ebaa3c14b7478266b50ffed19

See more details on using hashes here.

File details

Details for the file numpy-1.19.5-cp37-cp37m-win32.whl.

File metadata

  • Download URL: numpy-1.19.5-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 11.0 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.19.5-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 d051ec1c64b85ecc69531e1137bb9751c6830772ee5c1c426dbcfe98ef5788d7
MD5 4e87ab21f30016ea5b9a981e3ecd733a
BLAKE2b-256 c44c2be94fa407a0df1ac54b6ee2e42d002b1ea957748fda1b7775e224db12ce

See more details on using hashes here.

File details

Details for the file numpy-1.19.5-cp37-cp37m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: numpy-1.19.5-cp37-cp37m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 12.4 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.19.5-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 50a4a0ad0111cc1b71fa32dedd05fa239f7fb5a43a40663269bb5dc7877cfd28
MD5 bcd1e59d57515d2f7be107266cab4f00
BLAKE2b-256 fe93b0b203c693d621d6ee9577fc650bab49434c6d23c809dc4eb49db6a339af

See more details on using hashes here.

File details

Details for the file numpy-1.19.5-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: numpy-1.19.5-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 14.8 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.19.5-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6149a185cece5ee78d1d196938b2a8f9d09f5a5ebfbba66969302a778d5ddd1d
MD5 9aa2656bab43993cc99f9cd996c71997
BLAKE2b-256 08d6a6aaa29fea945bc6c61d11f6e0697b325ff7446de5ffd62c2fa02f627048

See more details on using hashes here.

File details

Details for the file numpy-1.19.5-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: numpy-1.19.5-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 12.6 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.19.5-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 06fab248a088e439402141ea04f0fffb203723148f6ee791e9c75b3e9e82f080
MD5 464f0f6284ede3cb2ea3070fee729048
BLAKE2b-256 0b2cb20e49628109f1f6aa56c5a283dc6001276b0b8853712dc66f2243abddfe

See more details on using hashes here.

File details

Details for the file numpy-1.19.5-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.19.5-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 13.4 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.19.5-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 36674959eed6957e61f11c912f71e78857a8d0604171dfd9ce9ad5cbf41c511c
MD5 5323920ec3e1953078cfa0560ae53867
BLAKE2b-256 b1e18c4c5632adaffc18dba4e03e97458dc1cb00583811e6982fc620b9d88515

See more details on using hashes here.

File details

Details for the file numpy-1.19.5-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.19.5-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 11.5 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.19.5-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 cae865b1cae1ec2663d8ea56ef6ff185bad091a5e33ebbadd98de2cfa3fa668f
MD5 538fe864a8809a8d9b6b5c102ac8de1f
BLAKE2b-256 ca8dcfeab2119d6c94e1c6ad7753853773a142109a5f8f56e1d8c940886814bc

See more details on using hashes here.

File details

Details for the file numpy-1.19.5-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.19.5-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 15.6 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.19.5-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 603aa0706be710eea8884af807b1b3bc9fb2e49b9f4da439e76000f3b3c6ff0f
MD5 0086e5551c22e62244781e4179a013c9
BLAKE2b-256 39baf3db2b5bb36fee2478b1cf47e7f9664b9c27241be80acd31c844404da297

See more details on using hashes here.

File details

Details for the file numpy-1.19.5-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.19.5-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 13.2 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.19.5-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 dbd18bcf4889b720ba13a27ec2f2aac1981bd41203b3a3b27ba7a33f88ae4827
MD5 baf1bd7e3a8c19367103483d1fd61cfc
BLAKE2b-256 eabcda526221bc111857c7ef39c3af670bbcf5e69c247b0d22e51986f6d0c5c2

See more details on using hashes here.

File details

Details for the file numpy-1.19.5-cp36-cp36m-win32.whl.

File metadata

  • Download URL: numpy-1.19.5-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 11.0 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.19.5-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 39b70c19ec771805081578cc936bbe95336798b7edf4732ed102e7a43ec5c07a
MD5 2a3e121d4f242cef4ef00d5e6e3cebc9
BLAKE2b-256 b24f5b2cdd441e92555377003b06c0c2c4ba0282a2bfe809f89a009e853fb26b

See more details on using hashes here.

File details

Details for the file numpy-1.19.5-cp36-cp36m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: numpy-1.19.5-cp36-cp36m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 12.4 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.19.5-cp36-cp36m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2e55195bc1c6b705bfd8ad6f288b38b11b1af32f3c8289d6c50d47f950c12e76
MD5 ad8e6247a175f3a9786eedb4baff7c06
BLAKE2b-256 abf66cb12866511a564dde8208111b551f9469ba1c3963a63077afbb8a070a4a

See more details on using hashes here.

File details

Details for the file numpy-1.19.5-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: numpy-1.19.5-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 14.8 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.19.5-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a4646724fba402aa7504cd48b4b50e783296b5e10a524c7a6da62e4a8ac9698d
MD5 0c8edfbbb26823b7495b5371558b1ae5
BLAKE2b-256 1432d3fa649ad7ec0b82737b92fefd3c4dd376b0bb23730715124569f38f3a08

See more details on using hashes here.

File details

Details for the file numpy-1.19.5-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: numpy-1.19.5-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 12.6 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.19.5-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 43d4c81d5ffdff6bae58d66a3cd7f54a7acd9a0e7b18d97abb255defc09e3140
MD5 fb4128d719d72130cbf24baf308761c9
BLAKE2b-256 ab81244258ba61e03ccbfff2b9d3918b3665184380c5591050eb84ac3e88d0b0

See more details on using hashes here.

File details

Details for the file numpy-1.19.5-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.19.5-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 13.4 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.19.5-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8b5e972b43c8fc27d56550b4120fe6257fdc15f9301914380b27f74856299fea
MD5 28d23e25c6e6654b2f65218c6e9b3825
BLAKE2b-256 45b26c7545bb7a38754d63048c7696804a0d947328125d81bf12beaa692c3ae3

See more details on using hashes here.

File details

Details for the file numpy-1.19.5-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.19.5-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 11.5 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.19.5-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 aeb9ed923be74e659984e321f609b9ba54a48354bfd168d21a2b072ed1e833ea
MD5 71cc7869a54cf55df4699aebe27e9344
BLAKE2b-256 9e3f693399e09bfc75737e0622803ba13d73e9a4da1d9fcc8614723372c5b00d

See more details on using hashes here.

File details

Details for the file numpy-1.19.5-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.19.5-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 15.6 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.19.5-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cc6bd4fd593cb261332568485e20a0712883cf631f6f5e8e86a52caa8b2b50ff
MD5 2651049b70d2ec07d8afd7637f198807
BLAKE2b-256 6a9d984f87a8d5b28b1d4afc042d8f436a76d6210fb582214f35a0ea1db3be66

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page