Skip to main content

Fundamental package for array computing in Python

Project description


Powered by NumFOCUS PyPI Downloads Conda Downloads Stack Overflow Nature Paper OpenSSF Scorecard

NumPy is the fundamental package for scientific computing with Python.

It provides:

  • a powerful N-dimensional array object
  • sophisticated (broadcasting) functions
  • tools for integrating C/C++ and Fortran code
  • useful linear algebra, Fourier transform, and random number capabilities

Testing:

NumPy requires pytest and hypothesis. Tests can then be run after installation with:

python -c "import numpy, sys; sys.exit(numpy.test() is False)"

Code of Conduct

NumPy is a community-driven open source project developed by a diverse group of contributors. The NumPy leadership has made a strong commitment to creating an open, inclusive, and positive community. Please read the NumPy Code of Conduct for guidance on how to interact with others in a way that makes our community thrive.

Call for Contributions

The NumPy project welcomes your expertise and enthusiasm!

Small improvements or fixes are always appreciated. If you are considering larger contributions to the source code, please contact us through the mailing list first.

Writing code isn’t the only way to contribute to NumPy. You can also:

  • review pull requests
  • help us stay on top of new and old issues
  • develop tutorials, presentations, and other educational materials
  • maintain and improve our website
  • develop graphic design for our brand assets and promotional materials
  • translate website content
  • help with outreach and onboard new contributors
  • write grant proposals and help with other fundraising efforts

For more information about the ways you can contribute to NumPy, visit our website. If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by opening a new issue or leaving a comment on a relevant issue that is already open.

Our preferred channels of communication are all public, but if you’d like to speak to us in private first, contact our community coordinators at numpy-team@googlegroups.com or on Slack (write numpy-team@googlegroups.com for an invitation).

We also have a biweekly community call, details of which are announced on the mailing list. You are very welcome to join.

If you are new to contributing to open source, this guide helps explain why, what, and how to successfully get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-2.2.1.tar.gz (20.2 MB view details)

Uploaded Source

Built Distributions

numpy-2.2.1-pp310-pypy310_pp73-win_amd64.whl (12.8 MB view details)

Uploaded PyPy Windows x86-64

numpy-2.2.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

numpy-2.2.1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl (6.8 MB view details)

Uploaded PyPy macOS 14.0+ x86-64

numpy-2.2.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl (21.0 MB view details)

Uploaded PyPy macOS 10.15+ x86-64

numpy-2.2.1-cp313-cp313t-win_amd64.whl (12.7 MB view details)

Uploaded CPython 3.13t Windows x86-64

numpy-2.2.1-cp313-cp313t-win32.whl (6.3 MB view details)

Uploaded CPython 3.13t Windows x86

numpy-2.2.1-cp313-cp313t-musllinux_1_2_x86_64.whl (17.9 MB view details)

Uploaded CPython 3.13t musllinux: musl 1.2+ x86-64

numpy-2.2.1-cp313-cp313t-musllinux_1_2_aarch64.whl (15.2 MB view details)

Uploaded CPython 3.13t musllinux: musl 1.2+ ARM64

numpy-2.2.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.13t manylinux: glibc 2.17+ x86-64

numpy-2.2.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.0 MB view details)

Uploaded CPython 3.13t manylinux: glibc 2.17+ ARM64

numpy-2.2.1-cp313-cp313t-macosx_14_0_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.13t macOS 14.0+ x86-64

numpy-2.2.1-cp313-cp313t-macosx_14_0_arm64.whl (5.2 MB view details)

Uploaded CPython 3.13t macOS 14.0+ ARM64

numpy-2.2.1-cp313-cp313t-macosx_11_0_arm64.whl (14.1 MB view details)

Uploaded CPython 3.13t macOS 11.0+ ARM64

numpy-2.2.1-cp313-cp313t-macosx_10_13_x86_64.whl (20.9 MB view details)

Uploaded CPython 3.13t macOS 10.13+ x86-64

numpy-2.2.1-cp313-cp313-win_amd64.whl (12.6 MB view details)

Uploaded CPython 3.13 Windows x86-64

numpy-2.2.1-cp313-cp313-win32.whl (6.3 MB view details)

Uploaded CPython 3.13 Windows x86

numpy-2.2.1-cp313-cp313-musllinux_1_2_x86_64.whl (17.9 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

numpy-2.2.1-cp313-cp313-musllinux_1_2_aarch64.whl (15.2 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ ARM64

numpy-2.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

numpy-2.2.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.0 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

numpy-2.2.1-cp313-cp313-macosx_14_0_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.13 macOS 14.0+ x86-64

numpy-2.2.1-cp313-cp313-macosx_14_0_arm64.whl (5.1 MB view details)

Uploaded CPython 3.13 macOS 14.0+ ARM64

numpy-2.2.1-cp313-cp313-macosx_11_0_arm64.whl (14.1 MB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

numpy-2.2.1-cp313-cp313-macosx_10_13_x86_64.whl (20.9 MB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

numpy-2.2.1-cp312-cp312-win_amd64.whl (12.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

numpy-2.2.1-cp312-cp312-win32.whl (6.3 MB view details)

Uploaded CPython 3.12 Windows x86

numpy-2.2.1-cp312-cp312-musllinux_1_2_x86_64.whl (17.9 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

numpy-2.2.1-cp312-cp312-musllinux_1_2_aarch64.whl (15.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

numpy-2.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

numpy-2.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

numpy-2.2.1-cp312-cp312-macosx_14_0_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.12 macOS 14.0+ x86-64

numpy-2.2.1-cp312-cp312-macosx_14_0_arm64.whl (5.1 MB view details)

Uploaded CPython 3.12 macOS 14.0+ ARM64

numpy-2.2.1-cp312-cp312-macosx_11_0_arm64.whl (14.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

numpy-2.2.1-cp312-cp312-macosx_10_13_x86_64.whl (20.9 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

numpy-2.2.1-cp311-cp311-win_amd64.whl (12.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

numpy-2.2.1-cp311-cp311-win32.whl (6.6 MB view details)

Uploaded CPython 3.11 Windows x86

numpy-2.2.1-cp311-cp311-musllinux_1_2_x86_64.whl (18.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

numpy-2.2.1-cp311-cp311-musllinux_1_2_aarch64.whl (15.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

numpy-2.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

numpy-2.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

numpy-2.2.1-cp311-cp311-macosx_14_0_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.11 macOS 14.0+ x86-64

numpy-2.2.1-cp311-cp311-macosx_14_0_arm64.whl (5.4 MB view details)

Uploaded CPython 3.11 macOS 14.0+ ARM64

numpy-2.2.1-cp311-cp311-macosx_11_0_arm64.whl (14.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

numpy-2.2.1-cp311-cp311-macosx_10_9_x86_64.whl (21.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

numpy-2.2.1-cp310-cp310-win_amd64.whl (12.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

numpy-2.2.1-cp310-cp310-win32.whl (6.6 MB view details)

Uploaded CPython 3.10 Windows x86

numpy-2.2.1-cp310-cp310-musllinux_1_2_x86_64.whl (18.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

numpy-2.2.1-cp310-cp310-musllinux_1_2_aarch64.whl (15.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

numpy-2.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numpy-2.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numpy-2.2.1-cp310-cp310-macosx_14_0_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 macOS 14.0+ x86-64

numpy-2.2.1-cp310-cp310-macosx_14_0_arm64.whl (5.4 MB view details)

Uploaded CPython 3.10 macOS 14.0+ ARM64

numpy-2.2.1-cp310-cp310-macosx_11_0_arm64.whl (14.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numpy-2.2.1-cp310-cp310-macosx_10_9_x86_64.whl (21.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

File details

Details for the file numpy-2.2.1.tar.gz.

File metadata

  • Download URL: numpy-2.2.1.tar.gz
  • Upload date:
  • Size: 20.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.13.0

File hashes

Hashes for numpy-2.2.1.tar.gz
Algorithm Hash digest
SHA256 45681fd7128c8ad1c379f0ca0776a8b0c6583d2f69889ddac01559dfe4390918
MD5 57c5757508a50d1daefa4b689e9701cb
BLAKE2b-256 f2a5fdbf6a7871703df6160b5cf3dd774074b086d278172285c52c2758b76305

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 5c5cc0cbabe9452038ed984d05ac87910f89370b9242371bd9079cb4af61811e
MD5 3cba151351656a83e4c84c942cf490e7
BLAKE2b-256 133e1959d5219a9e6d200638d924cedda6a606392f7186a4ed56478252e70d55

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4511d9e6071452b944207c8ce46ad2f897307910b402ea5fa975da32e0102800
MD5 7e379c1d0a5be8e548e35fa7abe1d2c0
BLAKE2b-256 d7df2adb0bb98a3cbe8a6c3c6d1019aede1f1d8b83927ced228a46cc56c7a206

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 3d03883435a19794e41f147612a77a8f56d4e52822337844fff3d4040a142964
MD5 cefbc2de3aa5ef518ce652fdaab00c96
BLAKE2b-256 aa3fb644199f165063154df486d95198d814578f13dd4d8c1651e075bf1cb8af

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 7ba9cc93a91d86365a5d270dee221fdc04fb68d7478e6bf6af650de78a8339e3
MD5 f975551321147c307bbdff4889061b47
BLAKE2b-256 f165d36a76b811ffe0a4515e290cb05cb0e22171b1b0f0db6bee9141cf023545

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp313-cp313t-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.1-cp313-cp313t-win_amd64.whl
  • Upload date:
  • Size: 12.7 MB
  • Tags: CPython 3.13t, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.13.0

File hashes

Hashes for numpy-2.2.1-cp313-cp313t-win_amd64.whl
Algorithm Hash digest
SHA256 bff7d8ec20f5f42607599f9994770fa65d76edca264a87b5e4ea5629bce12268
MD5 2100b60306e75288799fca60bd00b84f
BLAKE2b-256 7b9c4fce9cf39dde2562584e4cfd351a0140240f82c0e3569ce25a250f47037d

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp313-cp313t-win32.whl.

File metadata

  • Download URL: numpy-2.2.1-cp313-cp313t-win32.whl
  • Upload date:
  • Size: 6.3 MB
  • Tags: CPython 3.13t, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.13.0

File hashes

Hashes for numpy-2.2.1-cp313-cp313t-win32.whl
Algorithm Hash digest
SHA256 93cf4e045bae74c90ca833cba583c14b62cb4ba2cba0abd2b141ab52548247e2
MD5 30e6acf4391728d0a3a5e3494bd4a2c8
BLAKE2b-256 46728a5dbce4020dfc595592333ef2fbb0a187d084ca243b67766d29d03e0096

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp313-cp313t-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-cp313-cp313t-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 26c9c4382b19fcfbbed3238a14abf7ff223890ea1936b8890f058e7ba35e8d71
MD5 38d2bf31247d9005c7a0197aa992cf1d
BLAKE2b-256 f1ff94a4ce67ea909f41cf7ea712aebbe832dc67decad22944a1020bb398a5ee

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp313-cp313t-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-cp313-cp313t-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 08ef779aed40dbc52729d6ffe7dd51df85796a702afbf68a4f4e41fafdc8bda5
MD5 a1c458a98cd9c7ad63f9c301398f4d63
BLAKE2b-256 096905c169376016a0b614b432967ac46ff14269eaffab80040ec03ae1ae8e2c

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c1ad395cf254c4fbb5b2132fee391f361a6e8c1adbd28f2cd8e79308a615fe9d
MD5 b6492f49b50e892a7134baf2dba9f88d
BLAKE2b-256 dff8c80968ae01df23e249ee0a4487fae55a4c0fe2f838dfe9cc907aa8aea0fa

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 27f5cdf9f493b35f7e41e8368e7d7b4bbafaf9660cba53fb21d2cd174ec09631
MD5 9bc363d2782931efa2648b42ce358a4c
BLAKE2b-256 b13810ef509ad63a5946cc042f98d838daebfe7eaf45b9daaf13df2086b15ff9

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp313-cp313t-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-cp313-cp313t-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 676f4eebf6b2d430300f1f4f4c2461685f8269f94c89698d832cdf9277f30b84
MD5 01f9a5eb7ec872d9682bb6a174897b35
BLAKE2b-256 ce356831808028df0648d9b43c5df7e1051129aa0d562525bacb70019c5f5030

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp313-cp313t-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-cp313-cp313t-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 89b16a18e7bba224ce5114db863e7029803c179979e1af6ad6a6b11f70545008
MD5 73eb35111b027d6771d9a91eb21ad7ef
BLAKE2b-256 b55baa2d1905b04a8fb681e08742bb79a7bddfc160c7ce8e1ff6d5c821be0236

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp313-cp313t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-cp313-cp313t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 733585f9f4b62e9b3528dd1070ec4f52b8acf64215b60a845fa13ebd73cd0712
MD5 02031b405d028714126c26ffc5772f0e
BLAKE2b-256 6e3ed0e9e32ab14005425d180ef950badf31b862f3839c5b927796648b11f88a

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp313-cp313t-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-cp313-cp313t-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 4dfda918a13cc4f81e9118dea249e192ab167a0bb1966272d5503e39234d694e
MD5 7057313b668a4a26b5386203ebc040d9
BLAKE2b-256 a88704ddf02dd86fb17c7485a5f87b605c4437966d53de1e3745d450343a6f56

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.1-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 12.6 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.13.0

File hashes

Hashes for numpy-2.2.1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 164a829b6aacf79ca47ba4814b130c4020b202522a93d7bff2202bfb33b61c60
MD5 35bd751636dcea0ca0534ad9dee8057a
BLAKE2b-256 44be0e5cd009d2162e4138d79a5afb3b5d2341f0fe4777ab6e675aa3d4a42e21

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp313-cp313-win32.whl.

File metadata

  • Download URL: numpy-2.2.1-cp313-cp313-win32.whl
  • Upload date:
  • Size: 6.3 MB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.13.0

File hashes

Hashes for numpy-2.2.1-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 9ad014faa93dbb52c80d8f4d3dcf855865c876c9660cb9bd7553843dd03a4b1e
MD5 881b9b20e68b317850ad7b6306ac1c51
BLAKE2b-256 be5bcc155e107f75d694f562bdc84a26cc930569f3dfdfbccb3420b626065777

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f3eac17d9ec51be534685ba877b6ab5edc3ab7ec95c8f163e5d7b39859524716
MD5 a015f42afa15be8b87fc64120c245f18
BLAKE2b-256 cf791e20fd1c9ce5a932111f964b544facc5bb9bde7865f5b42f00b4a6a9192b

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 53c09385ff0b72ba79d8715683c1168c12e0b6e84fb0372e97553d1ea91efe51
MD5 07f7ea0a7f9f6ce0ba5e016dff2a91e8
BLAKE2b-256 0c2ca79d24f364788386d85899dd280a94f30b0950be4b4a545f4fa4ed1d4ca7

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f74e6fdeb9a265624ec3a3918430205dff1df7e95a230779746a6af78bc615af
MD5 eba9d71e631521bd1d9882f8bfbc01d2
BLAKE2b-256 f15ae572284c86a59dec0871a49cd4e5351e20b9c751399d5f1d79628c0542cb

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 526fc406ab991a340744aad7e25251dd47a6720a685fa3331e5c59fef5282a59
MD5 6d3f141f3a8ecd04e1a1f7c1f89a8ca2
BLAKE2b-256 7a1aa90ceb191dd2f9e2897c69dde93ccc2d57dd21ce2acbd7b0333e8eea4e8d

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp313-cp313-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-cp313-cp313-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 5b6c390bfaef8c45a260554888966618328d30e72173697e5cabe6b285fb2348
MD5 be6871a4edd2cd92b147421b9290e047
BLAKE2b-256 ebe58e81bb9d84db88b047baf4e8b681a3e48d6390bc4d4e4453eca428ecbb49

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp313-cp313-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-cp313-cp313-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 f419290bc8968a46c4933158c91a0012b7a99bb2e465d5ef5293879742f8797e
MD5 e58b8db1a97599ed02a630eb86616bb9
BLAKE2b-256 c02afb0a27f846cb857cef0c4c92bef89f133a3a1abb4e16bba1c4dace2e9b49

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3ecc47cd7f6ea0336042be87d9e7da378e5c7e9b3c8ad0f7c966f714fc10d821
MD5 8a2598b081c8af4ea6f6bbccc8965882
BLAKE2b-256 8c405792ccccd91d45e87d9e00033abc4f6ca8a828467b193f711139ff1f1cd9

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 f1d09e520217618e76396377c81fba6f290d5f926f50c35f3a5f72b01a0da780
MD5 9aacdedcb2cb3d6a45dfb823148e01cf
BLAKE2b-256 20d691a26e671c396e0c10e327b763485ee295f5a5a7a48c553f18417e5a0ed5

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 12.6 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.13.0

File hashes

Hashes for numpy-2.2.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 ba5511d8f31c033a5fcbda22dd5c813630af98c70b2661f2d2c654ae3cdfcfc8
MD5 dc9f3c1eaade4da63e5f87e878e5805e
BLAKE2b-256 17c1c31d3637f2641e25c7a19adf2ae822fdaf4ddd198b05d79a92a9ce7cb63e

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp312-cp312-win32.whl.

File metadata

  • Download URL: numpy-2.2.1-cp312-cp312-win32.whl
  • Upload date:
  • Size: 6.3 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.13.0

File hashes

Hashes for numpy-2.2.1-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 32cb94448be47c500d2c7a95f93e2f21a01f1fd05dd2beea1ccd049bb6001cd2
MD5 7c24a6a3b5c5b2c53c6807bf06c595c5
BLAKE2b-256 5f8a3794313acbf5e70df2d5c7d2aba8718676f8d054a05abe59e48417fb2981

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 67d4cda6fa6ffa073b08c8372aa5fa767ceb10c9a0587c707505a6d426f4e046
MD5 4bcac2b7f8510b0a6582b7d8661257be
BLAKE2b-256 0339e4e5832820131ba424092b9610d996b37e5557180f8e2d6aebb05c31ae54

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 fce4f615f8ca31b2e61aa0eb5865a21e14f5629515c9151850aa936c02a1ee51
MD5 60a01c86b1fc55e4ba8f2b41f690703b
BLAKE2b-256 3d6d0e22afd5fcbb4d8d0091f3f46bf4e8906399c458d4293da23292c0ba5022

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5062dc1a4e32a10dc2b8b13cedd58988261416e811c1dc4dbdea4f57eea61b0d
MD5 4c66f10580fa26d1d17b2bdda96a5fc5
BLAKE2b-256 7fa7c1f1d978166eb6b98ad009503e4d93a8c1962d0eb14a885c352ee0276a54

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9b1d07b53b78bf84a96898c1bc139ad7f10fda7423f5fd158fd0f47ec5e01ac7
MD5 a05208461ea09079ae569414d82a606c
BLAKE2b-256 7f114ebd7a3f4a655764dc98481f97bd0a662fb340d1001be6050606be13e162

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp312-cp312-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-cp312-cp312-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 55ba24ebe208344aa7a00e4482f65742969a039c2acfcb910bc6fcd776eb4355
MD5 ecd4289c703356f5b4fd7e440bf94ce8
BLAKE2b-256 1a74dd0bbe650d7bc0014b051f092f2de65e34a8155aabb1287698919d124d7f

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 780077d95eafc2ccc3ced969db22377b3864e5b9a0ea5eb347cc93b3ea900315
MD5 61d38533acaa90fb24657f089d177a6c
BLAKE2b-256 af4e8ed5868efc8e601fb69419644a280e9c482b75691466b73bfaab7d86922c

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3683a8d166f2692664262fd4900f207791d005fb088d7fdb973cc8d663626faa
MD5 22483d8935f5dc128393ad671fde7d8e
BLAKE2b-256 3dc359df91ae1d8ad7c5e03efd63fd785dec62d96b0fe56d1f9ab600b55009af

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 694f9e921a0c8f252980e85bce61ebbd07ed2b7d4fa72d0e4246f2f8aa6642ab
MD5 0b2024655573f96a595c7f5072205e84
BLAKE2b-256 6212b928871c570d4a87ab13d2cc19f8817f17e340d5481621930e76b80ffb7d

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 12.9 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.13.0

File hashes

Hashes for numpy-2.2.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 360137f8fb1b753c5cde3ac388597ad680eccbbbb3865ab65efea062c4a1fd16
MD5 c96783ee8ad6ce1efee94821929a12f5
BLAKE2b-256 6d1ebe3b9f3073da2f8c7fa361fcdc231b548266b0781029fdbaf75eeab997fd

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: numpy-2.2.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 6.6 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.13.0

File hashes

Hashes for numpy-2.2.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 b34d87e8a3090ea626003f87f9392b3929a7bbf4104a05b6667348b6bd4bf1cd
MD5 cce4ebb9afc1470db243c2ab4cc6639b
BLAKE2b-256 b29feb4a9a38867de059dcd4b6e18d47c3867fbd3795d4c9557bb49278f94087

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 4c86e2a209199ead7ee0af65e1d9992d1dce7e1f63c4b9a616500f93820658d0
MD5 e23d2bfbdb1bd1b2872c9e6e15f64dca
BLAKE2b-256 697eb83cc884c3508e91af78760f6b17ab46ad649831b1fa35acb3eb26d9e6d2

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 31b89fa67a8042e96715c68e071a1200c4e172f93b0fbe01a14c0ff3ff820fc8
MD5 df20d649bb023f98e487b229f01e9708
BLAKE2b-256 997b85cef6a3ae1b19542b7afd97d0b296526b6ef9e3c43ea0c4d9c4404fb2d0

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 38efc1e56b73cc9b182fe55e56e63b044dd26a72128fd2fbd502f75555d92591
MD5 b88238965c708578f2c198d1c6e2cf70
BLAKE2b-256 f2d4f999444e86986f3533e7151c272bd8186c55dda554284def18557e013a2a

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 51faf345324db860b515d3f364eaa93d0e0551a88d6218a7d61286554d190d73
MD5 fc7b253096fc566bbcbadfdf6b034f1b
BLAKE2b-256 d1721cd38e91ab563e67f584293fcc6aca855c9ae46dba42e6b5ff4600022899

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp311-cp311-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-cp311-cp311-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 9036d6365d13b6cbe8f27a0eaf73ddcc070cae584e5ff94bb45e3e9d729feab5
MD5 8cc0d82b938d71f45a67c74e07ddc7fd
BLAKE2b-256 5d696f3cccde92e82e7835fdb475c2bf439761cbf8a1daa7c07338e1e132dfec

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 bc8a37ad5b22c08e2dbd27df2b3ef7e5c0864235805b1e718a235bcb200cf1cb
MD5 93f50db664a6986c2ebed3ceb588f7cc
BLAKE2b-256 58b0034eb5d5ba12d66ab658ff3455a31f20add0b78df8203c6a7451bd1bee21

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f9b57eaa3b0cd8db52049ed0330747b0364e899e8a606a624813452b8203d5f7
MD5 91731d46f4ce4b04db512400f4e76ccb
BLAKE2b-256 9ffd2279000cf29f58ccfd3778cbf4670dfe3f7ce772df5e198c5abe9e88b7d7

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 40f9e544c1c56ba8f1cf7686a8c9b5bb249e665d40d626a23899ba6d5d9e1484
MD5 a739a2dfbceaa1140e564424b2a57540
BLAKE2b-256 5914645887347124e101d983e1daf95b48dc3e136bf8525cb4257bf9eab1b768

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 12.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.13.0

File hashes

Hashes for numpy-2.2.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b541032178a718c165a49638d28272b771053f628382d5e9d1c93df23ff58dbf
MD5 462b0704ebfd79120edfe6431adc57f4
BLAKE2b-256 a1a8554b0e99fc4ac11ec481254781a10da180d0559c2ebf2c324232317349ee

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: numpy-2.2.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 6.6 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.13.0

File hashes

Hashes for numpy-2.2.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 48fd472630715e1c1c89bf1feab55c29098cb403cc184b4859f9c86d4fcb6a95
MD5 004063642d3c3792a3f5ff0241a3fa0f
BLAKE2b-256 00e77c2cde16c9b87a8e14fdd262ca7849c4681cf48c8a774505f7e6f5e3b643

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f62aa6ee4eb43b024b0e5a01cf65a0bb078ef8c395e8713c6e8a12a697144528
MD5 e3e62b93245d9e37cc03ec3cfaf68118
BLAKE2b-256 97553b9147b3cbc3b6b1abc2a411dec5337a46c873deca0dd0bf5bef9d0579cc

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 059e6a747ae84fce488c3ee397cee7e5f905fd1bda5fb18c66bc41807ff119b2
MD5 b3de0a2c345541d2c9a322df360ca497
BLAKE2b-256 e257bdca9fb8bdaa810c3a4ff2eb3231379b77f618a7c0d24be9f7070db50775

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a7746f235c47abc72b102d3bce9977714c2444bdfaea7888d241b4c4bb6a78bf
MD5 e93369ddbb637d9d5a820b2bb79588c4
BLAKE2b-256 f7b6d8110985501ca8912dfc1c3bbef99d66e62d487f72e46b2337494df77364

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4250888bcb96617e00bfa28ac24850a83c9f3a16db471eca2ee1f1714df0f957
MD5 c1b113ad487a3bece6d7a70e0cf70f17
BLAKE2b-256 2e8c043fa4418bc9364e364ab7aba8ff6ef5f6b9171ade22de8fbcf0e2fa4165

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp310-cp310-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-cp310-cp310-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 7671dc19c7019103ca44e8d94917eba8534c76133523ca8406822efdd19c9308
MD5 95af4f6b620c76f9ccb8c5693c99737d
BLAKE2b-256 11b97f1e64a0d46d9c2af6d17966f641fb12d5b8ea3003f31b2308f3e3b9a6aa

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 61048b4a49b1c93fe13426e04e04fdf5a03f456616f6e98c7576144677598675
MD5 31c912e2fa723b877f2d710c26332927
BLAKE2b-256 842d0e895d02940ba6e12389f0ab5cac5afcf8dc2dc0ade4e8cad33288a721bd

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 aa3017c40d513ccac9621a2364f939d39e550c542eb2a894b4c8da92b38896ab
MD5 49863a39471cf191402da96512e52cb6
BLAKE2b-256 d88b32dd9f08419023a4cf856c5ad0b4eba9b830da85eafdef841a104c4fc05a

See more details on using hashes here.

File details

Details for the file numpy-2.2.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5edb4e4caf751c1518e6a26a83501fda79bff41cc59dac48d70e6d65d4ec4440
MD5 d3032be00b974d44aae687fd78a897b4
BLAKE2b-256 c7c45588367dc9f91e1a813beb77de46ea8cab13f778e1b3a0e661ab031aba44

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page