NumPy is the fundamental package for array computing with Python.
Project description
It provides:
a powerful N-dimensional array object
sophisticated (broadcasting) functions
tools for integrating C/C++ and Fortran code
useful linear algebra, Fourier transform, and random number capabilities
and much more
Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.
All NumPy wheels distributed on PyPI are BSD licensed.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
numpy-1.16.1.zip
(5.1 MB
view hashes)
Built Distributions
numpy-1.16.1-cp37-cp37m-win32.whl
(10.0 MB
view hashes)
numpy-1.16.1-cp36-cp36m-win32.whl
(10.0 MB
view hashes)
numpy-1.16.1-cp35-cp35m-win32.whl
(10.0 MB
view hashes)
numpy-1.16.1-cp27-cp27m-win32.whl
(10.0 MB
view hashes)
Close
Hashes for numpy-1.16.1-cp37-cp37m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f1a29267ac29fff0913de0f11f3a9edfcd3f39595f467026c29376fad243ebe3 |
|
MD5 | 18b7d994de469d38e26c75c27898fa4f |
|
BLAKE2b-256 | 41b83a6b07352c2542ca1c89be7583e7ca07bf513895b6ac59ae008054f326b1 |
Close
Hashes for numpy-1.16.1-cp37-cp37m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 79463d918d1bf3aeb9186e3df17ddb0baca443f41371df422f99ee94f4f2bbfe |
|
MD5 | 7443f622e549bf116ca561c1db6a4491 |
|
BLAKE2b-256 | d9916829d324a2966b0f2b7da55b88d7492610e5c22c74a99f6da55df2f7b2d0 |
Close
Hashes for numpy-1.16.1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0cdbbaa30ae69281b18dd995d3079c4e552ad6d5426977f66b9a2a95f11f552a |
|
MD5 | daaac731bf53b6f90bf381e30c0b0e35 |
|
BLAKE2b-256 | 615707c49e1a6d2706fb7336b3fb11dd285c1e96535c80833d7524f002f57086 |
Close
Hashes for numpy-1.16.1-cp37-cp37m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 485cb1eb4c9962f4cd042fed9424482ec1d83fee5dc2ef3f2552ac47852cb259 |
|
MD5 | df387b8e8ee398f2a6a46b18981ce7e3 |
|
BLAKE2b-256 | 0fc4cb112a28c67bc523caaee3b2b56d045e4b74704075e097b3f50a611eecce |
Close
Hashes for numpy-1.16.1-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b13faa258b20fa66d29011f99fdf498641ca74a0a6d9266bc27d83c70fea4a6a |
|
MD5 | 8eca0834ffce217b61633a2ba16f9e98 |
|
BLAKE2b-256 | 46e44a0cc770e4bfb34b4e10843805fef67b9a94027e59162a586c776f35c5bb |
Close
Hashes for numpy-1.16.1-cp36-cp36m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2b0cca1049bd39d1879fa4d598624cafe82d35529c72de1b3d528d68031cdd95 |
|
MD5 | 641af9183978922d4eb610c0df1abb4a |
|
BLAKE2b-256 | b51182916e23836a37c0d76babf74a7ca6f7b4fedd0814eaa166aacc2318b87c |
Close
Hashes for numpy-1.16.1-cp36-cp36m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 384e2dfa03da7c8d54f8f934f61b6a5e4e1ebb56a65b287567629d6c14578003 |
|
MD5 | 3a422881207202055c7530d3c4a63cc0 |
|
BLAKE2b-256 | 8410f1f99ba67aff4c3fb033571e87876ed0403114b13bc70cc125372b0c1dcb |
Close
Hashes for numpy-1.16.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7298fbd73c0b3eff1d53dc9b9bdb7add8797bb55eeee38c8ccd7906755ba28af |
|
MD5 | 2d146e75063ce8aaa255ea06d6647fa2 |
|
BLAKE2b-256 | f5bf4981bcbee43934f0adb8f764a1e70ab0ee5a448f6505bd04a87a2fda2a8b |
Close
Hashes for numpy-1.16.1-cp36-cp36m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 392e2ea22b41a22c0289a88053204b616181288162ba78e6823e1760309d5277 |
|
MD5 | a9561d8a38ee7d52126dfe779429036d |
|
BLAKE2b-256 | 3e6364588bca37e18944a28718230d53ab6ff415fad15105acf73b89b75a60c5 |
Close
Hashes for numpy-1.16.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c2c39d69266621dd7464e2bb740d6eb5abc64ddc339cc97aa669f3bb4d75c103 |
|
MD5 | 269c80fde767b2b65abec775171aebed |
|
BLAKE2b-256 | 88b8569d9c702685b595812fbfd9ee04f240653b7a15feec43cc98be3b34e5f5 |
Close
Hashes for numpy-1.16.1-cp35-cp35m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 34dd4922aab246c39bf5df03ca653d6265e65971deca6784c956bf356bca6197 |
|
MD5 | 42b9d99bf4b03e3e9ae7aee8cbdff97c |
|
BLAKE2b-256 | 2d96dc231b4bcd8781c16102e3deb5c857a39115917fe5abb8b137a36e453637 |
Close
Hashes for numpy-1.16.1-cp35-cp35m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 45080f065dcaa573ebecbfe13cdd86e8c0a68c4e999aa06bd365374ea7137706 |
|
MD5 | f2665475de0378467d88e6d80ac47f09 |
|
BLAKE2b-256 | 929c56778c5e07884dde41b9172d75f1a87d4e22a23e5abf9010e7313ed288a3 |
Close
Hashes for numpy-1.16.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 575cefd28d3e0da85b0864506ae26b06483ee4a906e308be5a7ad11083f9d757 |
|
MD5 | 486ce91fd66ec19044d8faa7d00e619b |
|
BLAKE2b-256 | ad15690c13ae714e156491392cdbdbf41b485d23c285aa698239a67f7cfc9e0a |
Close
Hashes for numpy-1.16.1-cp35-cp35m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f69dde0c5a137d887676a8129373e44366055cf19d1b434e853310c7a1e68f93 |
|
MD5 | 86aacbea051b7542a8bd3486d2fa79cd |
|
BLAKE2b-256 | c9771ed2555fcefa55a606bc1c8111fe1355ba0edbf7d7eb577510994fffe50f |
Close
Hashes for numpy-1.16.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8bbee788d82c0ac656536de70e817af09b7694f5326b0ef08e5c1014fcb96bb3 |
|
MD5 | 15bebbeddc5924243a010680e184b6e8 |
|
BLAKE2b-256 | f4479cc508af5af902609f2139a296d1056213bd12a5677f1e2b90bd5f50191b |
Close
Hashes for numpy-1.16.1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6ccfdcefd287f252cf1ea7a3f1656070da330c4a5658e43ad223269165cdf977 |
|
MD5 | 55ccd6d343be1e16e70159714ac74848 |
|
BLAKE2b-256 | e0b563b79fe426433fa1cd110eb04a94ec0c6967e56e5f57c98caf455a5fb6e2 |
Close
Hashes for numpy-1.16.1-cp27-cp27mu-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 62784b35df7de7ca4d0d81c5b6af5983f48c5cdef32fc3635b445674e56e3266 |
|
MD5 | 3bc676163ce4d526c8305bc889f0594d |
|
BLAKE2b-256 | 7cff26f236a30b2d2b7236ee400398a0cd11dfb1d91a4d2e17cf30e0b313ecbc |
Close
Hashes for numpy-1.16.1-cp27-cp27m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | a863957192855c4c57f60a75a1ac06ce5362ad18506d362dd807e194b4baf3ce |
|
MD5 | 3a7eba56bcebc52b223d63ab4b9bf029 |
|
BLAKE2b-256 | 4e53f9321242bf0181a28e4fa5604b712b2e9495df1863e7a83eec3d0cc1ef99 |
Close
Hashes for numpy-1.16.1-cp27-cp27m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4341a39fc085f31a583be505eabf00e17c619b469fef78dc7e8241385bfddaa4 |
|
MD5 | b2193c7af769169229eef8d2371929c2 |
|
BLAKE2b-256 | 95d78e0eee8bd4c1433a373abfb453ff9fcd5e0676ea0d80d5a0c2167eabad76 |
Close
Hashes for numpy-1.16.1-cp27-cp27m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ae602ba425fb2b074e16d125cdce4f0194903da935b2e7fe284ebecca6d92e76 |
|
MD5 | add6fcaf9b5007dca2fc966b918d585e |
|
BLAKE2b-256 | 6c5009c906ae367e66f826fea41676c584672371eddff8b60644df506665d758 |
Close
Hashes for numpy-1.16.1-cp27-cp27m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 69c152f7c11bf3b4fc11bc4cc62eb0334371c0db6844ebace43b7c815b602805 |
|
MD5 | 8f39da654cd27a96877955a2fbf3883f |
|
BLAKE2b-256 | 61df839828807cce8d513d5837c9104f5b406a6bcac37425f8c070cecae0fd6a |
Close
Hashes for numpy-1.16.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e9c88f173d31909d881a60f08a8494e63f1aff2a4052476b24d4f50e82c47e24 |
|
MD5 | 456aae0a43311da1570a53baef7f5620 |
|
BLAKE2b-256 | 3917f296f19b342975f6a6e653ef74a59fce9a8eeb2b052961f70c5f036fb8c1 |