Skip to main content
Help us improve Python packaging – donate today!

NumPy: array processing for numbers, strings, records, and objects.

Project Description

NumPy is a general-purpose array-processing package designed to efficiently manipulate large multi-dimensional arrays of arbitrary records without sacrificing too much speed for small multi-dimensional arrays. NumPy is built on the Numeric code base and adds features introduced by numarray as well as an extended C-API and the ability to create arrays of arbitrary type which also makes NumPy suitable for interfacing with general-purpose data-base applications.

There are also basic facilities for discrete fourier transform, basic linear algebra and random number generation.

All numpy wheels distributed from pypi are BSD licensed.

Windows wheels are linked against the ATLAS BLAS / LAPACK library, restricted to SSE2 instructions, so may not give optimal linear algebra performance for your machine. See http://docs.scipy.org/doc/numpy/user/install.html for alternatives.

Release history Release notifications

This version
History Node

1.14.2

History Node

1.14.1

History Node

1.14.0

History Node

1.14.0rc1

History Node

1.13.3

History Node

1.13.1

History Node

1.13.0

History Node

1.13.0rc2

History Node

1.13.0rc1

History Node

1.12.1

History Node

1.12.1rc1

History Node

1.12.0

History Node

1.12.0rc2

History Node

1.12.0rc1

History Node

1.12.0b1

History Node

1.11.3

History Node

1.11.2

History Node

1.11.2rc1

History Node

1.11.1

History Node

1.11.1rc1

History Node

1.11.0

History Node

1.11.0rc2

History Node

1.11.0rc1

History Node

1.11.0b3

History Node

1.10.4

History Node

1.10.3

History Node

1.10.2

History Node

1.10.1

History Node

1.10.0

History Node

1.9.3

History Node

1.9.2

History Node

1.9.1

History Node

1.9.0

History Node

1.8.2

History Node

1.8.1

History Node

1.8.0

History Node

1.7.2

History Node

1.7.1

History Node

1.7.0

History Node

1.6.2

History Node

1.6.1

History Node

1.6.0

History Node

1.5.1

History Node

1.5.0

History Node

1.4.1

History Node

1.4.0

History Node

1.3.0

History Node

1.2.1

History Node

1.2.0

History Node

1.1.1

History Node

1.0.4

History Node

1.0.3

History Node

1.0

History Node

1.0rc3

History Node

1.0rc2

History Node

1.0rc1

History Node

1.0b5

History Node

1.0b4

History Node

1.0b1

History Node

0.9.8

History Node

0.9.6

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
numpy-1.14.2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.7 MB) Copy SHA256 hash SHA256 Wheel cp27 Mar 12, 2018
numpy-1.14.2-cp27-cp27m-manylinux1_i686.whl (8.7 MB) Copy SHA256 hash SHA256 Wheel cp27 Mar 12, 2018
numpy-1.14.2-cp27-cp27m-manylinux1_x86_64.whl (12.1 MB) Copy SHA256 hash SHA256 Wheel cp27 Mar 12, 2018
numpy-1.14.2-cp27-cp27mu-manylinux1_i686.whl (8.7 MB) Copy SHA256 hash SHA256 Wheel cp27 Mar 12, 2018
numpy-1.14.2-cp27-cp27mu-manylinux1_x86_64.whl (12.1 MB) Copy SHA256 hash SHA256 Wheel cp27 Mar 12, 2018
numpy-1.14.2-cp27-none-win32.whl (9.8 MB) Copy SHA256 hash SHA256 Wheel cp27 Mar 12, 2018
numpy-1.14.2-cp27-none-win_amd64.whl (13.3 MB) Copy SHA256 hash SHA256 Wheel cp27 Mar 12, 2018
numpy-1.14.2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.7 MB) Copy SHA256 hash SHA256 Wheel cp34 Mar 12, 2018
numpy-1.14.2-cp34-cp34m-manylinux1_i686.whl (8.7 MB) Copy SHA256 hash SHA256 Wheel cp34 Mar 12, 2018
numpy-1.14.2-cp34-cp34m-manylinux1_x86_64.whl (12.1 MB) Copy SHA256 hash SHA256 Wheel cp34 Mar 12, 2018
numpy-1.14.2-cp34-none-win32.whl (9.8 MB) Copy SHA256 hash SHA256 Wheel cp34 Mar 12, 2018
numpy-1.14.2-cp34-none-win_amd64.whl (13.3 MB) Copy SHA256 hash SHA256 Wheel cp34 Mar 12, 2018
numpy-1.14.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.7 MB) Copy SHA256 hash SHA256 Wheel cp35 Mar 12, 2018
numpy-1.14.2-cp35-cp35m-manylinux1_i686.whl (8.7 MB) Copy SHA256 hash SHA256 Wheel cp35 Mar 12, 2018
numpy-1.14.2-cp35-cp35m-manylinux1_x86_64.whl (12.1 MB) Copy SHA256 hash SHA256 Wheel cp35 Mar 12, 2018
numpy-1.14.2-cp35-none-win32.whl (9.8 MB) Copy SHA256 hash SHA256 Wheel cp35 Mar 12, 2018
numpy-1.14.2-cp35-none-win_amd64.whl (13.4 MB) Copy SHA256 hash SHA256 Wheel cp35 Mar 12, 2018
numpy-1.14.2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.7 MB) Copy SHA256 hash SHA256 Wheel cp36 Mar 12, 2018
numpy-1.14.2-cp36-cp36m-manylinux1_i686.whl (8.7 MB) Copy SHA256 hash SHA256 Wheel cp36 Mar 12, 2018
numpy-1.14.2-cp36-cp36m-manylinux1_x86_64.whl (12.2 MB) Copy SHA256 hash SHA256 Wheel cp36 Mar 12, 2018
numpy-1.14.2-cp36-none-win32.whl (9.8 MB) Copy SHA256 hash SHA256 Wheel cp36 Mar 12, 2018
numpy-1.14.2-cp36-none-win_amd64.whl (13.4 MB) Copy SHA256 hash SHA256 Wheel cp36 Mar 12, 2018
numpy-1.14.2.zip (4.9 MB) Copy SHA256 hash SHA256 Source None Mar 12, 2018

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging CloudAMQP CloudAMQP RabbitMQ AWS AWS Cloud computing Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page