NumPy: array processing for numbers, strings, records, and objects.
Project description
NumPy is a general-purpose array-processing package designed to efficiently manipulate large multi-dimensional arrays of arbitrary records without sacrificing too much speed for small multi-dimensional arrays. NumPy is built on the Numeric code base and adds features introduced by numarray as well as an extended C-API and the ability to create arrays of arbitrary type which also makes NumPy suitable for interfacing with general-purpose data-base applications.
There are also basic facilities for discrete fourier transform, basic linear algebra and random number generation.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file numpy-1.9.2.zip.
File metadata
- Download URL: numpy-1.9.2.zip
- Upload date:
- Size: 4.5 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
e37805754f4ebb575c434d134f6bebb8b857d9843c393f6943c7be71ef57311c
|
|
| MD5 |
e80c19d2fb25af576460bb7dac31c59a
|
|
| BLAKE2b-256 |
bbb15a87c6cc7ab5201ad0552a5f84e194f822693ea59b0b97dc77a18f04554a
|
File details
Details for the file numpy-1.9.2.tar.gz.
File metadata
- Download URL: numpy-1.9.2.tar.gz
- Upload date:
- Size: 4.0 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
325e5f2b0b434ecb6e6882c7e1034cc6cdde3eeeea87dbc482575199a6aeef2a
|
|
| MD5 |
a1ed53432dbcd256398898d35bc8e645
|
|
| BLAKE2b-256 |
cea8bce42709c423f044bc60038922d81ac0be5042d025ea9e3d4734341eef83
|
File details
Details for the file numpy-1.9.2-cp35-cp35m-manylinux1_x86_64.whl.
File metadata
- Download URL: numpy-1.9.2-cp35-cp35m-manylinux1_x86_64.whl
- Upload date:
- Size: 15.0 MB
- Tags: CPython 3.5m
- Uploaded using Trusted Publishing? No
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
776c4df79ffac22801eb17f1119088f56b652ed01b41deefe14911d66d95a04d
|
|
| MD5 |
7e859a7804467882eada09f724d3bae4
|
|
| BLAKE2b-256 |
a0436dbb2f0d89c98f90e9851cbba712ff8afbaf699b243447566c50aa56420c
|
File details
Details for the file numpy-1.9.2-cp34-cp34m-manylinux1_x86_64.whl.
File metadata
- Download URL: numpy-1.9.2-cp34-cp34m-manylinux1_x86_64.whl
- Upload date:
- Size: 15.0 MB
- Tags: CPython 3.4m
- Uploaded using Trusted Publishing? No
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
811dec937131a554e0ace8dfa6b0919ae1b47e376901eb65bf9b1f99f35efbff
|
|
| MD5 |
8b534c57e23f05bda86603c6a0a96ef2
|
|
| BLAKE2b-256 |
cbe0e8a2ae5130db93472fac4dff0211b5fb4f580b0dcd399584290c7664d5d0
|
File details
Details for the file numpy-1.9.2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.
File metadata
- Download URL: numpy-1.9.2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
- Upload date:
- Size: 3.7 MB
- Tags: CPython 3.4m, macOS 10.10+ Intel (x86-64, i386), macOS 10.10+ x86-64, macOS 10.6+ Intel (x86-64, i386), macOS 10.9+ Intel (x86-64, i386), macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
c8ec2900b86d5579023cfe0ae3d6211253e3812171b718c416c584832b439c8b
|
|
| MD5 |
1df533f72f8c9eab956017da349579e5
|
|
| BLAKE2b-256 |
e1153b6edf45429063b233a296dea9e5ab408152168d395033006c8b7799944e
|
File details
Details for the file numpy-1.9.2-cp33-cp33m-manylinux1_x86_64.whl.
File metadata
- Download URL: numpy-1.9.2-cp33-cp33m-manylinux1_x86_64.whl
- Upload date:
- Size: 14.8 MB
- Tags: CPython 3.3m
- Uploaded using Trusted Publishing? No
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
9f37f271049451033d3458f80f411ff1f59177ffd6cbb10a3ffc80af84da2149
|
|
| MD5 |
46c2f8a57776808b36068f282507280c
|
|
| BLAKE2b-256 |
0539673f4e48993a397f64c8e8798e8df26446027194346a013af556eeac9093
|
File details
Details for the file numpy-1.9.2-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.
File metadata
- Download URL: numpy-1.9.2-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
- Upload date:
- Size: 3.7 MB
- Tags: CPython 3.3m, macOS 10.10+ Intel (x86-64, i386), macOS 10.10+ x86-64, macOS 10.6+ Intel (x86-64, i386), macOS 10.9+ Intel (x86-64, i386), macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
25bb6805253e390ca85d3fc990be0ec6527d19e0968de1af7accc5c8e45d5c72
|
|
| MD5 |
d2d8fb9161e662e0b04c32458b2e1ba7
|
|
| BLAKE2b-256 |
c7c7178ea881b18c27f60a6765aa4ab964a604d7aed86523b4e603a216c3d03c
|
File details
Details for the file numpy-1.9.2-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.
File metadata
- Download URL: numpy-1.9.2-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
- Upload date:
- Size: 3.7 MB
- Tags: CPython 2.7, macOS 10.10+ Intel (x86-64, i386), macOS 10.10+ x86-64, macOS 10.6+ Intel (x86-64, i386), macOS 10.9+ Intel (x86-64, i386), macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
ad83e22634e1a34a00d1809a0bd69d04eca68d5c975a1f298c6cead191420071
|
|
| MD5 |
296f576bb648b8195b379b0bf39791ce
|
|
| BLAKE2b-256 |
d1e4268d113fae408ce7f49f4c9c9cacc543d85a29a09058c496f38073fbdbae
|
File details
Details for the file numpy-1.9.2-cp27-cp27mu-manylinux1_x86_64.whl.
File metadata
- Download URL: numpy-1.9.2-cp27-cp27mu-manylinux1_x86_64.whl
- Upload date:
- Size: 14.7 MB
- Tags: CPython 2.7mu
- Uploaded using Trusted Publishing? No
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
425cc2d1f8326e281db328fdddfdbaaee8c907c375cbe9664cc85276f4a05db8
|
|
| MD5 |
0da340e64f1aa9736fbef6000beea7ed
|
|
| BLAKE2b-256 |
474634a876b2ef1e9048df8c678a246aae8c727f025fd907451b6a75dd0cea1f
|
File details
Details for the file numpy-1.9.2-cp27-cp27m-manylinux1_x86_64.whl.
File metadata
- Download URL: numpy-1.9.2-cp27-cp27m-manylinux1_x86_64.whl
- Upload date:
- Size: 14.7 MB
- Tags: CPython 2.7m
- Uploaded using Trusted Publishing? No
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
5026382cc5feb674d13e13da6f4b1fe6db800be9887cc7e93fb8a4db2d11d9bd
|
|
| MD5 |
4e1ce604b8a619e04fcdfdc32dab2d9a
|
|
| BLAKE2b-256 |
fd4770fe002303661db1a87293244c15ac5d066ed0c2b352ac1ec5f739318f63
|
File details
Details for the file numpy-1.9.2-cp26-cp26mu-manylinux1_x86_64.whl.
File metadata
- Download URL: numpy-1.9.2-cp26-cp26mu-manylinux1_x86_64.whl
- Upload date:
- Size: 14.7 MB
- Tags: CPython 2.6mu
- Uploaded using Trusted Publishing? No
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
247aa9efcc1a279b7251a9e9e6d95c6d1e860e461b9bec502765e26b4e9edd1f
|
|
| MD5 |
13aadb18f61bccf3763c2180a35eceea
|
|
| BLAKE2b-256 |
b28493e97806357fc0bdfe4a9fc88e35f2e47bf94dbd0e062891b7e2a6984213
|
File details
Details for the file numpy-1.9.2-cp26-cp26m-manylinux1_x86_64.whl.
File metadata
- Download URL: numpy-1.9.2-cp26-cp26m-manylinux1_x86_64.whl
- Upload date:
- Size: 14.7 MB
- Tags: CPython 2.6m
- Uploaded using Trusted Publishing? No
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
b7a2439a390f702de036597c0dee92fb3333a7f9b4607aa256a21f087297e936
|
|
| MD5 |
2f0025f9840bb87095db1e156350e970
|
|
| BLAKE2b-256 |
6d6f84d83f96e445fe814d3cc593a1b0b0f1e17c3a33a0577413037058574973
|