NumPy is the fundamental package for array computing with Python.
Project description
It provides:
a powerful N-dimensional array object
sophisticated (broadcasting) functions
tools for integrating C/C++ and Fortran code
useful linear algebra, Fourier transform, and random number capabilities
and much more
Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.
All NumPy wheels distributed on PyPI are BSD licensed.
NumPy requires pytest and hypothesis. Tests can then be run after installation with:
python -c 'import numpy; numpy.test()'
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
Hashes for numpy-1.23.5-pp38-pypy38_pp73-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 01dd17cbb340bf0fc23981e52e1d18a9d4050792e8fb8363cecbf066a84b827d |
|
MD5 | 633d574a35b8592bab502ef569b0731e |
|
BLAKE2b-256 | 3fce04d7772671d8d3a14e426d7560047821c4e2d29ee2b5cfa252601412083b |
Hashes for numpy-1.23.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f9a909a8bae284d46bbfdefbdd4a262ba19d3bc9921b1e76126b1d21c3c34135 |
|
MD5 | 89f6dc4a4ff63fca6af1223111cd888d |
|
BLAKE2b-256 | 0f3d25e99f2191cce5029310c41cf9a34b5107d4475477bbce2f6d2e68c1c93b |
Hashes for numpy-1.23.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | abdde9f795cf292fb9651ed48185503a2ff29be87770c3b8e2a14b0cd7aa16f8 |
|
MD5 | b4d17d6b79a8354a2834047669651963 |
|
BLAKE2b-256 | 257b3b587a62aa54ad7ecf90eabfc77cf78e96d3df1d0e8c31fc534ad3ca6e17 |
Hashes for numpy-1.23.5-cp311-cp311-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0cbe9848fad08baf71de1a39e12d1b6310f1d5b2d0ea4de051058e6e1076852d |
|
MD5 | 6c9af68b7b56c12c913678cafbdc44d6 |
|
BLAKE2b-256 | 190db8c34e4baf258d77a8592bdce45183e9a12874c167f5966c7dd467b74ea9 |
Hashes for numpy-1.23.5-cp311-cp311-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b2a9ab7c279c91974f756c84c365a669a887efa287365a8e2c418f8b3ba73fb0 |
|
MD5 | 6936b6bcfd6474acc7a8c162a9393b3c |
|
BLAKE2b-256 | 9b55a2669debe264b1f22a8133734595128e40b96a8066e17e53e8d160168e41 |
Hashes for numpy-1.23.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 58f545efd1108e647604a1b5aa809591ccd2540f468a880bedb97247e72db387 |
|
MD5 | 3c60928ddb1f55163801f06ac2229eb0 |
|
BLAKE2b-256 | e8adb935c7421657a032fd2a5332eed098f3b9993a155afceb1daa280ff6611f |
Hashes for numpy-1.23.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5039f55555e1eab31124a5768898c9e22c25a65c1e0037f4d7c495a45778c9f2 |
|
MD5 | 6b7319f66bf7ac01b49e2a32470baf28 |
|
BLAKE2b-256 | 2b1a9ac00116d3a64b5ea031fdb2ff071062a6e2140553fa0770b5f007b84252 |
Hashes for numpy-1.23.5-cp311-cp311-macosx_11_0_arm64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 56e454c7833e94ec9769fa0f86e6ff8e42ee38ce0ce1fa4cbb747ea7e06d56aa |
|
MD5 | 6c7102f185b310ac70a62c13d46f04e6 |
|
BLAKE2b-256 | b8d0e6a2cb9a3f3e863a43e50949e9ae704be70baf398fd5af59355f65c8740a |
Hashes for numpy-1.23.5-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ce571367b6dfe60af04e04a1834ca2dc5f46004ac1cc756fb95319f64c095a96 |
|
MD5 | 4222cfb36e5ac9aec348c81b075e2c05 |
|
BLAKE2b-256 | 6e7f94797cfe0263a30805f3074e535adfde02b885ac43d1e4dac85f82213b0b |
Hashes for numpy-1.23.5-cp310-cp310-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | dbee87b469018961d1ad79b1a5d50c0ae850000b639bcb1b694e9981083243b6 |
|
MD5 | 3fea9247e1d812600015641941fa273f |
|
BLAKE2b-256 | 6a03ae6c3c307f9c5c7516de3df3e764ebb1de33e54e197f0370992138433ef4 |
Hashes for numpy-1.23.5-cp310-cp310-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 522e26bbf6377e4d76403826ed689c295b0b238f46c28a7251ab94716da0b280 |
|
MD5 | c63a6fb7cc16a13aabc82ec57ac6bb4d |
|
BLAKE2b-256 | af928efba008b9bda66456a1844a0e133dc76c08c5fb68c67a674f046211db29 |
Hashes for numpy-1.23.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5e05b1c973a9f858c74367553e236f287e749465f773328c8ef31abe18f691e1 |
|
MD5 | db07645022e56747ba3f00c2d742232e |
|
BLAKE2b-256 | e4f3679b3a042a127de0d7c84874913c3e23bb84646eb3bc6ecab3f8c872edc9 |
Hashes for numpy-1.23.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7903ba8ab592b82014713c491f6c5d3a1cde5b4a3bf116404e08f5b52f6daf43 |
|
MD5 | c787f4763c9a5876e86a17f1651ba458 |
|
BLAKE2b-256 | 676bd7c93d458d16464da9b3f560a20c363a19e242ebbb019bd1e1d797523851 |
Hashes for numpy-1.23.5-cp310-cp310-macosx_11_0_arm64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e9f4c4e51567b616be64e05d517c79a8a22f3606499941d97bb76f2ca59f982d |
|
MD5 | 1b56e8e6a0516c78473657abf0710538 |
|
BLAKE2b-256 | 4d39d33202cc56c21123a50c6d5e160d00c18ff685ab864dbd4bf80dd40a7af9 |
Hashes for numpy-1.23.5-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9c88793f78fca17da0145455f0d7826bcb9f37da4764af27ac945488116efe63 |
|
MD5 | 8a412b79d975199cefadb465279fd569 |
|
BLAKE2b-256 | 0faedad4b8e7c65494cbbd1c063de114efaf9acd0f5f6171f044f0d4b6299787 |
Hashes for numpy-1.23.5-cp39-cp39-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 09b7847f7e83ca37c6e627682f145856de331049013853f344f37b0c9690e3df |
|
MD5 | bad36b81e7e84bd7a028affa0659d235 |
|
BLAKE2b-256 | 08366589c7d5fc4fecda63de4453fefff7c58f6de2b1bb7dfbe7fa807bf85c46 |
Hashes for numpy-1.23.5-cp39-cp39-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | af1da88f6bc3d2338ebbf0e22fe487821ea4d8e89053e25fa59d1d79786e7481 |
|
MD5 | cc14d62a158e99c57f925c86551e45f0 |
|
BLAKE2b-256 | d595f311e6fdaabe24f909eeb6d5482e3adef27fa8389cb8a84823ae560bf480 |
Hashes for numpy-1.23.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 33161613d2269025873025b33e879825ec7b1d831317e68f4f2f0f84ed14c719 |
|
MD5 | 54fa63341eaa6da346d824399e8237f6 |
|
BLAKE2b-256 | 4cb9038abd6fbd67b05b03cb1af590cfc02b7f1e5a37af7ac6a868f5093c29f5 |
Hashes for numpy-1.23.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | bf837dc63ba5c06dc8797c398db1e223a466c7ece27a1f7b5232ba3466aafe3d |
|
MD5 | 6e417b087044e90562183b33f3049b09 |
|
BLAKE2b-256 | 5da1cdac656aed8bc04dc86296490f8dbef68474c3294cc31af30f2bd0ec06de |
Hashes for numpy-1.23.5-cp39-cp39-macosx_11_0_arm64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | a7ac231a08bb37f852849bbb387a20a57574a97cfc7b6cabb488a4fc8be176de |
|
MD5 | 9cbac793d77278f5d27a7979b64f6b5b |
|
BLAKE2b-256 | 9e9dff17c357f7144301da85f8c03d56593cfd2904e9ce89f86c8eefaa96d2d5 |
Hashes for numpy-1.23.5-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8969bfd28e85c81f3f94eb4a66bc2cf1dbdc5c18efc320af34bffc54d6b1e38f |
|
MD5 | 174befd584bc1b03ed87c8f0d149a58e |
|
BLAKE2b-256 | 8c7a171d3b4a54de835c8f95181dd2885607c0e04adca55ef99d9de559b4c9ba |
Hashes for numpy-1.23.5-cp38-cp38-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ca51fcfcc5f9354c45f400059e88bc09215fb71a48d3768fb80e357f3b457e1e |
|
MD5 | 76095726ba459d7f761b44acf2e56bd1 |
|
BLAKE2b-256 | 4c426274f92514fbefcb1caa66d56d82ac7ac89f7652c0cef1e159a4b79e09f1 |
Hashes for numpy-1.23.5-cp38-cp38-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 06005a2ef6014e9956c09ba07654f9837d9e26696a0470e42beedadb78c11b07 |
|
MD5 | 7f38f7e560e4bf41490372ab84aa7a38 |
|
BLAKE2b-256 | b90e10ab011eaebeed29d28ad710d0a3ab2654c06a2800e178e8f2f3a5947ad4 |
Hashes for numpy-1.23.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | d208a0f8729f3fb790ed18a003f3a57895b989b40ea4dce4717e9cf4af62c6bb |
|
MD5 | a8045b59187f2e0ccd4294851adbbb8a |
|
BLAKE2b-256 | c64f63f6f16d3f44a764a3b66c6233e133baf912e198a93e14c39ee991f587d0 |
Hashes for numpy-1.23.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 92c8c1e89a1f5028a4c6d9e3ccbe311b6ba53694811269b992c0b224269e2398 |
|
MD5 | 57d5439556ab5078c91bdeffd9c0036e |
|
BLAKE2b-256 | bfd11017fe3f5d65c4fe054a793f18f940d913868bb2846a02d3f6244a829a30 |
Hashes for numpy-1.23.5-cp38-cp38-macosx_11_0_arm64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0aaee12d8883552fadfc41e96b4c82ee7d794949e2a7c3b3a7201e968c7ecab9 |
|
MD5 | 6c233a36339de0652139e78ef91504d4 |
|
BLAKE2b-256 | 63d43f0d610a2006434f2b7b2e0c80291368d59b0a03bb3e1911fdb9476232d4 |
Hashes for numpy-1.23.5-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f063b69b090c9d918f9df0a12116029e274daf0181df392839661c4c7ec9018a |
|
MD5 | 699daeac883260d3f182ae4bbbd9bbd2 |
|
BLAKE2b-256 | d255b9b4bfb9d1d828d7d3192c4059e7b4a7d755ba2e1618089af4be77c152d1 |